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Abstract: We propose a setup allowing to entangle two directly non-interacting radiation modes
applying four sequential pulsed quantum resonant interactions with a noisy vibrational mode of a
mechanical oscillator which plays the role of the mediator. We analyze Gaussian entanglement of
the radiation modes generated by the transducer and confirm that the noisy mechanical mode can
mediate generation of entanglement. The entanglement, however, is limited if the interaction
gains are not individually optimized. We prove the robustness of the transducer to optical losses
and the influence of the mechanical bath and propose the ways to achieve maximal performance
through the individual optimization.
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1. Introduction

Quantum transducers are hybrid quantum systems important for development of unified quantum
technology [1]. They practically demonstrate ability to universally entangle even very different
quantum systems [2–4] and therefore, exchange quantum states between them. The transducer in
principle connects two different systems A and B that otherwise are not interacting [5]. For an
example, the systems A and B individually interact only in the pairs A − M and B − M with a
mediating system M. The latter is however also a quantum system, therefore it can introduce
quantum noise to the transducer. Moreover, M is typically open to an environment, which is
noisy and lossy and limitedly measurable. It is therefore important to take this connection into
account to propose a feasible quantum transducer. Continuous-variable (CV) quantum transducers
are capable to quantum mechanically couple two different oscillators A and B by a mediating
oscillator M . They can generate Gaussian CV entanglement, which can be used, for example, to
teleport states between A and B [6]. Advantageously, they can be built, without any nonlinearity,
from the most common linearized interactions A − M, B − M of the oscillators. First type of
transducers use simultaneously running linearized couplings A − M and B − M towards a steady
state where A − B coupling can be of a high quality and sufficient strength [7]. Ideally, the
mediator M should be completely eliminated and not influence the coupling A − B. Nontrivial
optimization of the A − M and B − M coupling strengths over time can improve the transducer
quality.

These transducers, however, cannot operate in time-resolved quantum regime, with nonclassical
states defined within a shorter time interval, used in modern optical [8, 9] and microwave
experiments [10, 11]. To solve this problem, pulsed CV quantum transducers operating with
optical and microwave pulses are required. The pulsed regime was already used to generate
entanglement [10] and propose for quantum teleportation [12]. Complementary to previous
approach, the pulsed transducers individually control the interactions A − M and B − M by time
non-overlapping pump pulses. The main idea is to use twice a sequence of the interactions A−M
and B −M and exploit power of geometric phase effect [13] for CVs to eliminate the mediator M
regardless of its noisy initial state. Recently, a principal robustness of such the pulsed transducers
has been proven theoretically and temporal optimization of pulse control beyond the geometric
phase effect has been suggested to reach the robust regime [14]. It opens a way to propose the
pulsed transducers for various experimental platforms, for example, quantum optomechanics and
electromechanics.
Rapid development of quantum optomechanics [15, 16] puts forward a mechanical oscillator

as a suitable mediator for the construction of the pulsed transducers. A lot of progress is done
in the direction of optoelectromechanical transducers. High-fidelity quantum state conversion
between microwave and optical fields may be performed through the excitation of the mechanical
dark mode [5, 17–20]. This approach allows significant suppression of the mechanical noise
from the mediator. Several experimental works were performed in the direction of quantum
state transfer. In [21] an integrated optomechanical and electromechanical nanocavity was
used to efficiently interconvert microwave and optical signals. In this device a photonic crystal
defect cavity and an electrical circuit were both coupled to the same mechanical degree of
freedom. In [22] a piezoelectric optomechanical crystal was used for coherent signal transfer
between itinerant microwave and optical fields. In another experimental work [23] a mechanically
compliant silicon nitride membrane was used to realize a high-fidelity conversion between optical
light and microwave. In [24] a transducer utilizing a high-Q nanomembrane to interconvert
radio-frequency waves with optical light was demonstrated. Very recently a new experimental
work [25] considering the device capable for microwave-to-optics conversion by placing all
components inside a re-entrant microwave cavity was performed. This design allows the wireless
coupling to the transmission line with the possibility to vary the strength of this coupling without
affecting the performance of the setup. There was also sufficient progress in the domain of



transducers interconnecting optical fields. Coherent quantum state transfer between optical fields
by the sequence of optomechanical pulses was studied theoretically [26]. In the experiment [27] a
conversion of optical fields between two different frequencies by coupling them to a mechanical
mode of a silica resonator was demonstrated. It was also the first experimental observation of
a mechanical dark mode for the optomechanical transducer. Despite this remarkable progress
in the field of opto- and electromechanical transducers, there is still one sufficient limitation —
mechanical noise which restricts the performance of aforementioned setups. Our approach, based
on the geometric phase effect allows to bypass this limitation. This method requires a pulsed
control of mechanical systems, which is simultaneously advantageously compatible with modern
quantum optics [8, 9, 28].

In this paper, we propose a pulsed CV quantum transducer with a noisy mechanical system as a
mediator and analyze its feasibility for optoelectromechanical experiment. We study the influence
of radiation losses and mechanical bath and we show that optimization of parameters allows
high performance of the proposed transducer even for very noisy mediator. To demonstrate the
feasibility of the proposed setup we firstly consider the symmetrical transducer which connects
optical field to optical field. Such scheme is a good demonstration of the viability of the proposed
concept and does not require involved modifications of the state-of-the-art experimental platforms
for near-future implementation. Only then we consider more general case of the asymmetrical
transducer coupling optical to microwave fields. This case is very important since it follows the
trend to connect different quantum systems which is crucial for the future development of hybrid
quantum systems [29, 30].

2. Pulsed CV Quantum Symmetrical Transducer

2.1. Setup description

The basic idea of the setup which we consider is depicted in Fig. 1. The two radiation modes
A and B are coupled to the same mechanical oscillator M but do not interact directly. The
quantum states of the modes A and B are defined in temporal pulses with duration τA and
τB correspondingly (see Fig. 1 (a)). Each pulse interacts to the mechanical mediator M twice
during the protocol. After the interaction of the first pulse with the mechanical mode is complete,
the former is sent to the delay line (see Fig. 1 (a)) while the second pulse enters its cavity to
interact with the mechanical mode. The operation is then repeated until the four interactions are
performed. The block scheme of the protocol is depicted on Fig. 1 (b). Note that the transducer
between two optical modes requires only one one-sided optomechanical cavity, to which the
pulses are directed in turns.
The mechanical mediator is coupled to the pulses by the means of four sequential quantum

non-demolition (QND) interactions [31,32]. The nondemolition interactions preserve always one
quadrature variable (generalized position or momentum) of the single oscillator and perform
therefore a partial quadrature exchange between the two oscillators. Only a single non-demolition
variable is transferred between two systems during an individual interaction. The appropriate
combination of such QND interactions of the modes A and B with mechanical mediator M
allows driving the latter around a closed path in the phase space in such a way that the geometric
phase appears. The geometric phase effect has been already used in quantum optics [33–35] and
optomechanics where mechanical oscillator was coupled to a qubit [36] or light [37,38]. As a
result of the geometric phase imparted to the mechanical system the modes A and B appear to be
coupled to each other but not to the mediator M that is brought back to the initial state. This
result is achievable due to specific character of the QND interaction, which qualify it to be a
basic CV quantum gate. The transducer can therefore principally work for any initial state, even a
very noisy one, of the mediator M .

In [14], it has been observed that the transducer can be stable against the small in-coupling and
out-coupling losses of the radiation modes and losses in the delay lines, if the interaction gains of
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Fig. 1. (a) Schematic representation of the pulsed transducer interconnecting two radiation
modes A and B which may be both optical as well as optical and microwave fields. The first
amplitude-modulated pulse A (red) containing classical Stokes and anti-Stokes sidebands on
ωA
cav ±ωm and quantum fluctuations, which are in the vacuum state |0〉, on ωA

cav , is sent to
the first cavity to interact with mechanical mode M during the time τA . After the interaction
is complete the pulse is sent to the delay line whereas the second pulse B (blue), being
in the vacuum state |0〉 as well, interacts with M during τB within the second cavity. The
interactions of the two pulses are then repeated one more time and both pulses are released
to the outputs. Radiation pulses are subject to losses Tls and the mechanical mode is coupled
at rate γ to the mechanical bath with mean occupation number nth . (b) Block-diagram of
the sequence of the interactions between the pulses of modes A and B with the mechanical
mediator M .

all four QND coupling are optimized. To reach sufficiently high gain of individual interactions
with mediator and overall gain of the transducer, the enhancement by a high-Q cavity is necessary.
The intracavity field is continuously leaking out the cavity. Simultaneously, the mechanical mode
is also continuously damped to its noisy environment. Considerations of these imperfections go
far beyond the basic stability check in [14]. In more realistic setup with the cavities and noisy
mechanical environment, we therefore need to carefully analyze the performance of quantum
transducer through noisy mediator and compare it to realistic parameters of the experimental
schemes.

2.2. Optomechanical interaction

In a basic case an optomechanical system may be modeled as a single cavity mode of the optical
resonator interacting with a single one of a mechanical oscillator via the radiation pressure (see
Fig. 1 (a)). The Hamiltonian of the optomechanical system may thus be written as [39]:

H = ~ωc

4

(
X2 + Y2

)
+
~ωm

4

(
p2 + q2

)
− ~g0

4
q

(
X2 + Y2

)
,

with X,Y and q, p being the quadratures of optical and mechanical modes correspondingly,
with eigenfrequencies ωc and ωm. These quadratures satisfy commutation relations [X,Y ] = 2i,
[q, p] = 2i. The single-photon coupling rate g0 is usually very small and thus the optomechanical
interaction is very weak. To further enhance this interaction the cavity is pumped by a strong



classical field. This approach allows to linearize the dynamics of the system and consider small
quantum corrections to the mean classical values of the quadratures. The CV transducer is capable
to generate Gaussian entanglement correlating these corrections.

To obtain a QND interaction we consider each pump to be resonant with the cavity and properly
modulated at the mechanical resonant frequency which is assumed to exceed the corresponding
cavity decay rates ωm � κA, κB (the resolved sideband condition). After using a rotating wave
approximation where we get rid of terms oscillating at 2ωm, in terms of the quantum corrections
defined at linearization, we obtain the following QND interaction Hamiltonian depending on the
phase of the pump:

Hi = ~κiqYA or Hj = ~κjpXB, (1)

where i = {1, 3}, j = {2, 4} denotes the interaction number, κ1 = −g1, κ2 = g2, κ3 = g3,
κ4 = −g4 are individual interaction strengths of radiation modes with the mechanical one. The
change of the sign of interaction strength can be obtained by a suitable adjustment of pump
phase. The large intracavity photon number ncav,i corresponding to i-th interaction enhances the
optomechanical coupling strength so that gi = g0

√
ncav,i . See Fig. 1 (b) for our choice of the

sequence of the QND interactions. This sequence of interactions leads to the closed rectangular
path in the phase space of mediator’s variables q and p. Due to this the mediator becomes
uncoupled from the radiation modes at the end of the protocol and does not affect its efficiency.
In the Heisenberg picture the system of quantum Langevin equations [40] describing the

dynamics of the first and second QND interactions may be written as follows:

ÛXA = −κAXA +
√

2κAX in
A + κ1q,

ÛYA = −κAYA +
√

2κAY in
A ,

Ûq = −γ
2

q +
√
γξx1,

Ûp = −γ
2

p +
√
γξp1 − κ1YA,

ÛXB = −κBX2 +
√

2κBX in
B ,

ÛYB = −κBY2 +
√

2κBY in
B − κ2p,

Ûq = −γ
2

q +
√
γξx2 + κ2XB,

Ûp = −γ
2

p +
√
γξp2,

(2)

where κA,B are cavity decay rates of two corresponding cavities, γ is the mechanical damping
coefficient and ξxi,pi are mechanical noise quadratures. Note, here the mechanical decoherence
is present during whole the time of the entangling process, differently to simplified analysis in
Ref. [14].

2.3. Adiabatic elimination and the entanglement generation

As it was mentioned previously we firstly consider symmetrical transducer putting equal decay
rates κA = κB = κ and assuming that κ is much larger than other rates in the dynamical
equations (2). The latter condition gives us a possibility to adiabatically eliminate the influence
of the intracavtiy field by setting the derivatives of field quadratures equal to zero [12]. To
find theoretical upper bound for generated entanglement, we assume here the mechanical
mode decoherence-free putting γ = 0 and ξxi,pi = 0. Previous studies [41] show that the
optomechanical QND interaction can be degraded by cavity memory effects due to finite
linewidth κ and mechanical bath. The consideration when these effects are eliminated therefore
allows to estimate the ultimate performance of our transducer that we will later use to evaluate
the realistic regimes. We refer to this adiabatic lossless and noiseless regime as the ideal one.
Using Langevin equations and the input-output relations in the form

Qout (t) =
√

2κQ(t) −Qin(t), (3)

where Q = {X,Y }, we can show that the scheme depicted in Fig. 1 is equivalent to the QND



interaction between modes A and B:

Xout
A = Xin

A + η
2Xin

B , Xout
B = Xin

B ,

Yout
A = Yin

A , Yout
B = Yin

B − η2Yin
A ,

q = q(0),
p = p(0),

(4)

where we have introduced effective QND coupling strength η = g
√

2τ
κ , new quadratures

Q = {X,Y}, Q = 1√
τ

∫ τ
o

Q(t)dt integrated over rectangular pulses, pulse duration time τ (at this
point we assumed identical pulses τA = τB = τ) and we have put all optomechanical couplings
equal to each other and equal to g. As we can see from (4) the mechanical mode is completely
traced out from these transformations due to geometric phase effect discussed in the Section 2.1
and 2.2.
We choose the entanglement of the modes A and B as the measure of the efficiency of the

proposed transducer. Our consideration is limited to zero-mean Gaussian states as the initial
states of the three modes are such (the vacuum states for the radiation ones and the thermal
state for the mechanical mode) and the nondemolition interaction due to its linearity preserves
the Gaussianity of the quantum states. Any zero-mean Gaussian state ρ̂ of two modes A and B
with quadratures f = [XA,YA,XB,YB]T can be fully described by the covariance matrix with
elements Vi j =

1
2 Tr

[
ρ̂
(
fi fj + fj fi

) ]
. To numerically characterize the Gaussian entanglement

we use logarithmic negativity defined as

EN = max
[
0,− log2 ν−

]
, (5)

with ν− being the smallest symplectic eigenvalue of the partially transposed covariance matrix [42]
that can be computed as follows:

ν− =
1
√

2

√
Σ(V) −

√
Σ(V)2 − 4 det V,

where

Σ(V) = detV1 + detV2 − 2 detVc,

withV1,2,Vc being 2 × 2 block-matrices composing the covariance matrix:

V =
[
V1 Vc

VT
c V2

]
.

In the ideal case of adiabatic elimination of the intracavity modes and the absence of decoherence
processes the symplectic eigenvalue for the two radiation modes A and B may be expressed in
the following form:

ν0
− =

√
1 − 2η4

[√
1 + η−4 − 1

]
. (6)

The corresponding logarithmic negativity is nonzero for arbitrary η > 0 and monotonically
increases regardless of the state of the mechanical mediator since in (4) the mechanical quadratures
appear to be traced out of the transformations of the radiation modes. The dependence of the
entanglement on the coupling strength is illustrated in Fig. 2 (solid purple curve). The main
question is how close the realistic transducer can be to this idealised case.

3. Decoherence processes for the symmetrical transducer

In this section we consider the radiation loss and mechanical decoherence during whole time of
the transducer operation. First we include radiation losses in the delay lines, then we study the



influence of the mechanical bath and finally we combine both to explore their joint contribution.
It allows a detailed analysis of decoherence in the quantum transducer.
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Fig. 2. Logarithmic negativity EN as the function of QND coupling strength η in the lossless
adiabatic case (top purple curve) and in the case of radiation losses present (lower solid
curves). Dotted lines correspond to the case of the optimal combination of the strengths of
individual interactions. It demonstrates that radiation losses only partially limit generation of
entanglement from the transducer. The optimization of gains is efficient only for large loss.

3.1. The influence of radiation losses

The radiation losses may be modeled by a virtual beamsplitter with the transmittance Tls . After
a mode with quadratures Q passes this beamsplitter the quadratures are transformed in the
following way:

Q →
√

TlsQ +
√

1 − TlsQls

with Qls being noise quadratures of vacuum. We introduce these beamsplitters after the first and
the second QND interactions (see Fig. 1 (b)). For the sake of simplicity we assume damping
coefficients Tls to be the same for both modes. We consider the initial mechanical state to be in
the ground state within this section.
The radiation losses break the entanglement monotonicity for increased interaction gain η.

Instead, the maximal value of logarithmic negativity is reached for a finite coupling. This effect is
obviously more pronounced at larger losses (see Fig. 2 for details). For higher η smaller amounts
of losses are sufficient to break the entanglement. In the limit of small losses Tls ∼ 1 and weak
coupling η � 1 the symplectic eigenvalue may be approximated in the following form:

ν− ' 1 − 1
2
(1 + Tls) η2. (7)

Losses therefore do not impose a threshold on the value of η — for any transmittance Tls there is
entanglement for arbitrarily low values of η. The coupling strength η however becomes bounded
from above (see Fig. 2). We also see from this figure that the entanglement behavior near the
origin is defined by the losses value — the approximated value of the derivative of the logarithmic
negativity reads:

∂EN

∂η

����
η→0
' 2

ln 2
√

Tlsη. (8)

In the ideal case without any losses we compensate for the influence of the noisy mechanical
mediator setting strengths of each interaction equal to each other. Losses lead to the imbalance in
the system that can be corrected by making these strengths non-equal. We numerically find the
optimal combination of individual QND gains ηi that provides the maximum of the achievable



entanglement given the constraint on coupling strengths 0 < ηi < η. The coupling strength can
be manipulated by change of interaction time or pumping. They are equivalent at this point. The
result of the numerical optimization is presented in Fig. 2. The maximal logarithmic negativity
EN is plotted as a function of the upper boundary of the region over which we optimize. As we
can see from this figure the optimization helps to restore high values of entanglement especially in
case of high losses. In the case of small losses and small η non-optimized logarithmic negativity
is close to the maximally achievable value (6).

3.2. The influence of the thermal environment
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Fig. 3. Logarithmic negativity EN as the function of the QND coupling η. For both left and
right figures solid and dashed lines correspond to the non-optimized case with respectively
g or τ varied, dotted lines with markers show the result of optimization. For the plots we
used γ = 1.5 × 10−6 κ. (a) Lossless case in presence of mechanical bath. Parameters are
varied in the following regions: 0 ≤ g ≤ 0.4κ; 7 × 102/κ ≤ τ ≤ 9 × 104/κ. This plot
demonstrates that mechanical bath does not affect the entanglement drastically and the
optimization is efficient for larger mechanical bath occupation numbers. (b) Mechanical bath
and radiation losses. Parameters here are varied in the following regions: 0 ≤ g ≤ 0.4κ;
7 × 102/κ ≤ τ ≤ 9 × 104/κ. This plot demonstrates that the performance of the proposed
transducer may be quite high. Even for large bath occupation nth = 200 the optimization
helps to reach significant values of the entanglement.

Now we explore our setup with the presence of the thermal mechanical environment and
investigate its influence on the protocol performance. We consider the mechanical bath to be in
the thermal state with mean occupation number nth, being coupled to the mechanical mode at
rate γ and we model it by the noisy quadratures ξxi,pi in (2) with i = {1, 2}.
In the idealised adiabatic case each of interactions is parametrized by a single coupling

parameter ηi , upper-bounded by maximal η. In presence of the mechanical bath the entanglement
changes differently with respect to changes in optomechanical coupling g and pulse duration τ
even if those result in equal coupling parameter η. It is reflected in Fig. 3 (a). Increasing of g
causes deviation from the monotonic increase of entanglement which is seen more clearly for large



values of g. If we instead increase the temporal duration of pulses τ to achieve same interaction
gain η the entanglement is suppressed stronger because the influence of the mechanical bath is
obviously more significant for longer interaction times. It is worth noting that for any thermal
occupation arbitrarily low coupling η generates entanglement. We also note that in contrast to
previous section, the derivatives near the origin are the same in this case, so in the limit η � 1
all curves coincide.

To reach maximal entanglement we again optimize the logarithmic negativity with respect to
the four unequal optomechanical couplings gi and different interaction times τ. The result of this
optimization is presented in Fig. 3 (a). The optimization proves especially useful for larger values
of mean occupation number nth: in contrast to the non-optimal case of equal couplings, in the
optimized regime entanglement monotonically increases with η.

We would like to note that in the region of small values of the mean bath occupation number
nth and QND coupling η the entanglement values are close to the ones of the ideal adiabatic case.
On the other hand, in the case of large nth , which is of our interest, the entanglement increases at
different rate than in the adiabatic regime.

3.3. Joint influence of radiation losses and mechanical bath

To complete the full analysis we consider the joint impact of the radiation losses and mechanical
bath on the protocol performance which is reflected in Fig. 3 (b). Apparently, joint influence of
the radiation losses and mechanical bath is not critical. The transducer still keeps possibility to
generate detectable entanglement, especially for low η. The figure shows that including radiation
losses in addition to mechanical bath depresses the curves more for larger interaction strength in
agreement with results of Section 3.1. The figure shows as well that the influence of the radiation
losses is more drastic than the mechanical bath impact when both are present simultaneously. It
is therefore important to keep the delay lines lossless.

We once again optimize the interaction parameters ηi by varying simultaneously optomechanical
couplings gi and the pulse durations τi to achieve maximum of entanglement. We see that in
the case of joint influence of both mechanical bath and radiation losses the optimization helps
sufficiently, especially for larger values of mean occupation number nth and radiation losses.
In particular, for high nth = 200 where for the non-optimized case the entanglement is not
generated at all, the optimal regime shows sufficient values of logarithmic negativity which is
a very promising result. In agreement with Section 3.1 the optimal entanglement saturates to
a finite value. It clearly demonstrates advantage of the optimization beyond the basic idea of
geometric phase effect in the real pulsed cavity quantum transducer.

4. Asymmetrical transducer

Up to this moment we considered a symmetric transducer that could in principle be implemented
with two radiation modes entering in turns a same optomechanical cavity. Now we switch to a
principally different case, where a common mechanical mode is shared across two opto(electro-
)mechanical cavities. This type of transducer allows coupling physically different modes of
radiation, for instance, optical and microwave fields and was implemented in continuous wave
regime in Refs. [23, 24]. The performance of the transducer has been proven [23] to be partially
limited by mechanical environment occupation. We show that our scheme is capable of reasonable
performance at relatively high temperatures.
To characterize the system performance we introduce new effective QND coupling param-

eter η′ =
√

2gAgB
√
τAτB
κAκB

, where subscripts A and B denote optical and microwave systems

correspondingly. We take into account losses in both modes and the mechanical bath.
Our analysis shows that in the case of small radiation losses and low mechanical bath

occupation the optoelectromechanical transducer demonstrates very small deviations from
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Fig. 4. Logarithmic negativity EN as the function of QND coupling η′ in the presence
of mechanical bath and radiation losses for the case of asymmetric transducer. Solid
lines correspond to the non-optimized cases with gA,B varied, dashed lines — for the
same case with τA,B increased, dotted lines with markers stand for the optimized cases.
Parameters are varied in the following regions: 0 ≤ gA ≤ 0.07κA; 0 ≤ gB ≤ 0.1κB;
2.2 × 102/κA ≤ τA ≤ 4.4 × 103/κA; 2.3/κB ≤ τB ≤ 113/κB with κB = 0.01 × κA and
γ = 1.5 × 10−4κB . Brown dashed line is responsible for the changes in τB while changes
in τA in the corresponding region does not lead to any entanglement appearance thus
demonstrating the asymmetry of the system. This figure demonstrates that the proposed
transducer is feasible to entangle optical and microwave fields with the state of the art
experimental possibilities.

maximally achievable performance (See Fig. 4) even without optimization of the individual
interactions. For the numerical parameters of the analysis we were inspired by two experimental
works. The first one reported in Ref. [43] considers a nanoscale silicon optomechanical crystal
and the second one [10] explores pulsed entanglement in an electromechanical system.
To achieve maximum of entanglement we performed the same optimization of parameters

as we did previously unless this time the coupling strengths gA,B and pulse durations τA,B for
the two modes were bounded in individual regions in order to reflect the difference between
the two modes. In the case of small losses and low occupations this optimization does not help
sufficiently (See Fig. 4 where green lines virtually overlap). However for the case of high thermal
occupation nth = 200 where the entanglement is not observable (solid brown line on Fig. 4) the
optimized curve demonstrates significant values of the logarithmic negativity (brown dotted line
with markers).

It is worth noting that variation of τA and τB leads to different results in the entanglement
behavior. As you may see for the case of nth = 200 variation of τB (dashed brown curve) leads to
a region of non-zero entanglement, whereas variation of τA in the region of realistic parameters
does not produce any entanglement. This is related to the fact that at large bath occupation
number the individual subsystems are very sensitive to the changes in the pulse duration thus the
asymmetry of the transducer becomes more apparent.

5. Conclusion

In this paper we explored pulsed optomechanical transducer which entangles two directly non-
interacting radiation modes with assistance of a noisy mechanical mediator. We considered this
system in the adiabatic regime for the case of symmetrical transducer interconnecting optical
fields and we explored the realistic performance of this system in the presence of decoherence for
both symmetrical and asymmetrical (allowing to connect optical to microwave radiation) cases.
We have shown that the appropriate choice of parameters and their numerical optimization over
controllable interaction time and pumping power allow promising performance of such device



for experiment. It goes beyond simple understanding based on the geometric phase effect [14].
Particularly, for the case of very high bath occupation number nth = 200 where the entanglement
is not generated in the non-optimal case, the optimization shows significant values of achievable
logarithmic negativity. It is apparently measurable value of the entanglement detectable in the
experiments. This result is a good demonstration of potential efficiency of proposed pulsed
transducer and a stimulation for the experimental teams. It opens the way for further exploration of
pulsed transducers combining them with other physical platforms, like for example atoms [44,45]
or solid-state systems like NV centers [46, 47].
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