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Feasible setup for pulsed quantum non-demolition interaction between two distant mechanical os-
cillators through optical or microwave mediator is proposed. The proposal uses homodyne measure-
ment of the mediator and feedforward control of the mechanical oscillators to reach the interaction.
To verify quantum nature of the interaction, we investigate the Gaussian entanglement generated
in the mechanical modes. We evaluate it under influence of mechanical bath and propagation loss
for the mediator and propose ways to optimize the interaction. Finally, both currently available
optomechanical and electromechanical platforms are numerically analyzed. The analysis shows that
implementation is already feasible with current technology.
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I. INTRODUCTION

Quantum optomechanics and electromechanics con-
necting light and microwaves with mechanical motion
at the quantum level is an emerging field of quantum
physics and technology [1–3]. Recently, Gaussian quan-
tum entanglement between mechanical oscillator and mi-
crowave field [4], and nonclassical photon-phonon corre-
lation of mechanical membrane and optical pulse [5] have
been experimentally demonstrated. Both experiments
used modern pulsed optomechanics [6–8]. They open
new possibilities to experimentally connect other physi-
cal platforms with mechanical oscillator, like continuous-
variable cold atom ensembles [9–11], and further many
discrete systems like individual atoms [9, 12], supercon-
ducting qubits [13, 14], solid-state systems [15–18] and
semiconductor systems [19, 20]. Together with these in-
teresting and challenging interdisciplinary experiments,
state-of-the-art of laboratory techniques could currently
allow to let interact two mechanical oscillators medi-
ated by light or microwave field. It is another inter-
esting step forward, two similar mechanical oscillators
coupled at quantum level have not been demonstrated
yet. It can be very stimulating especially because the
connection between two mechanical systems can physi-
cally connect quantum optomechanics to classical ther-
modynamics. If two similar quantum mechanical oscil-
lators will be interfaced by the quantum version of the
coupling typically used in classical mechanics, they can
naturally generate entanglement. It is a simple witness
that they were coupled quantum mechanically. Addi-
tionally, the mechanical-mechanical interaction can be
quantum non-demolition type, which is required for basic
continuous-variable quantum gate [21] , useful for its spe-
cific features, for both gate-based [22] and cluster-state-
based [23] quantum computing. Recently, the nonlocal
optical QND gate was demonstrated [24] following the
theoretical proposals in [25, 26]. Such the QND coupling
was already broadly exploited between two atomic en-
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sembles [27]. It is therefore much more important for the
future to achieve such the well-defined quantum interac-
tion of mechanical oscillators, not only the generation of
entangled state of two mechanical systems.

Generation of entanglement between two mechanical
systems have been already proposed in three different
configurations. In the first type of proposed setups, two
mechanical oscillators have been placed in a single opti-
cal cavity [28–36]. In this case, the continuous generation
of steady-state entanglement appears because the me-
chanical oscillators interact with join optical intra-cavity
field. This configuration has been extensively used to dis-
cuss continuous-time quantum synchronization [37–39].
In the second kind of proposals, two entangled beams
of light were used to entangle two mechanical systems
without necessity to measure them [40–42]. In the third
kind of proposed setups, two continuous-wave beams of
light, leaving two continuously pumped optomechanical
cavities, are jointly detected in Bell measurement and
photocurrent is used to correct the mechanical oscilla-
tors [43–45] . These schemes can generate entanglement
at a distance, however, it is very limited because of insta-
bilities in the blue-detuned continuous-wave regime. Ad-
vanced time-continuous quantum measurement and con-
trol has been suggested to prepare mechanical entangle-
ment [46]. Recently, theoretical investigation of optome-
chanical crystals has offered many other ways how to ob-
tain mechanical entanglement [47]. Our goal is to propose
currently feasible scheme with potential to use power of
quantum optics tools to complement recent experimen-
tal test of coupled quantized mechanical oscillations of
trapped ions [48].

In this paper, we propose currently feasible way to
build basic pulsed quantum non-demolition (QND) inter-
action between two mechanical oscillators at a distance,
connected by light or microwave field. The scheme is de-
picted in Fig. 1. Using homodyne detection of light or mi-
crowave field and feedforward control, means of both me-
chanical oscillators precisely follow the QND interaction.
To generate significant entanglement of mechanical oscil-
lators, coherent light is sufficient, and the entanglement
can be very well estimated when intra-cavity field can be
adiabatically eliminated. On the other hand, squeezed

ar
X

iv
:1

60
5.

05
93

2v
1 

 [
qu

an
t-

ph
] 

 1
9 

M
ay

 2
01

6

mailto:nikita.vostrosablin@upol.cz


2

light is advantageous to approach ideal QND interac-
tion between two mechanical systems. Feasible squeez-
ing of light is capable to enhance entangling power of
the QND interaction. However, for larger optomechani-
cal coupling strength and larger squeezing, non-adiabatic
methods taking the intracavity field fully into account
are required. Importantly, the non-adiabatic calcula-
tions predict a decrease of the entanglement power for
larger squeezing. It is due to presence of the intra-cavity
field and the squeezing has to be therefore optimized to
get maximum of entangling power. We prove sufficient
stability of the QND interaction under influence of me-
chanical bath and transmission loss between two sepa-
rated cavities. Finally, we verified that it is feasible to
build the mechanical QND interaction for both current
optomechanical [49] and electromechanical [50] setups.

The paper is organized in the following way. We begin
by mathematical definition of quantum-nondemolition
interaction and principal description of the experimen-
tal setup. First, in Sec. III we carry out a simple prin-
cipal analysis of the physics of the setup. To do so we
start from a brief derivation of equations of motion for
an optomechanical system in Sec. III A and solve those in
Sec. III B ignoring for a while the decoherence and elim-
inating intracavity modes. We quantify the interaction
between the mechanical modes analyzing the transfer of
first moments of quadratures, and for a figure of merit
of the strength of the interaction we employ the entan-
glement between the modes. We use logarithmic nega-
tivity [51] as a measure of entanglement. We show prin-
cipal possibility of the protocol performance and derive
the simplest conditions on the experimental parameters.

Second, in Sec. IV we perform a full numerical analy-
sis of the system allowing for the imperfections. Those
include impact of the intracavity modes that mediate the
interaction between the travelling light pulse and the me-
chanical modes and the thermal bath causing decoher-
ence of the latter. We as well investigate the impact of
the optical loss between the cavities. We show that with
currently available parameters the protocol can estab-
lish a QND interface between the two distant mechanical
modes.

II. SETUP FOR PULSED QND INTERACTION
BETWEEN MECHANICAL OSCILLATOR

In this paper, we propose a feasible way of implemen-
tation of quantum non-demolition (QND) interaction be-
tween mechanical modes of two distant optomechanical
cavities. The QND interaction of two harmonic oscilla-
tors may be described by Hamiltonian H

int
= ~gQ1Q2

with Q1,2 being the position or momentum of the cor-
responding oscillator and g, interaction strength. After
the interaction both the variables Q1 and Q2 remain un-
perturbed (not demolished) whereas the complementary
ones to Q1 (Q2) become linearly displaced by a value
proportional to gQ2 (gQ1).

q1
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FIG. 1. The protocol of QND interaction between two me-
chanical modes. a) Simplified scheme, S — squeezing oper-
ation, HD — homodyne detector. b) possible experimental
implementation with the imperfections: η — optical losses
between the cavities, nth — thermal mechanical environment.

The proposed scheme is presented in the Fig. 1. It is
the simplest setup for generation of QND coupling be-
tween two mechanical systems. It is basically a serial
scheme which does not require multiple pass of optical
pulse through single optomechanical cavity. Moreover,
it exploits advantage of squeezed light, homodyne detec-
tion, which are very efficient resources of quantum op-
tics. The feedforward correction on mechanics can be
done simply at any time by classical pulse of laser light.
The modes of two mechanical oscillators M1 and M2 in-
teract by turns with an optical (or microwave) pulse L
via opto(electro-)mechanical coupling. The pulse is then
detected and the result of the detection is used to lin-
early displace the mechanical mode of the first cavity (if
needed, in the second one is displaced as well). The opti-
cal pulse can be prepared in a squeezed intensive coherent
state and sent into the optomechanical cavity. The latter
in essence comprises an optical mode coupled via radi-
ation pressure to a mechanical harmonic oscillator [52].
We follow the standard approach [1, 53, 54] and assume
that the optical pulse is displaced with a strong classical
component that is modulated at mechanical frequency.
This ensures that the effective interaction within the cav-
ity is the non-demolition type.

The QND interaction allows a partial exchange of the
variables between the mechanical mode M1 and the trav-
elling pulse (see Fig. 1 (a)). The latter is then redirected
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to the second cavity with mechanical oscillator M2, which
we assume to be identical to the M1. The QND interac-
tion within the second cavity allows to transmit a vari-
able of the mode M1 carried by the pulse to the mode
M2 and in turn to transmit a variable of the mode M2

to the light. The pulse is then detected and the result of
detection is used to displace the mode M1 to complete
transfer of the M2 variable. A proper strong presqueezing
of the light pulse and the feed-forward correction allow
to eliminate all variables from the final transformation
of the mechanical modes that consequently approach an
ideal QND interaction between them.

III. PERFORMANCE OF SETUP FOR QND
INTERACTION

A. Optomechanical quantum non-demolition
interaction

Let us first consider a single optomechanical cavity
that in essence embodies an optical mode and a mechani-
cal one. The two modes are coupled by radiation pressure
with the Hamiltonian [52] Hrp = −~g0ncavx/xzp, where
ncav stands for intracavity photon number, x, mechani-
cal displacement from equilibrium, g0, so-called single-
photon coupling strength. The mechanical zero-point
fluctuation amplitude, denoted by xzp, for a mechanical
oscillator with mass m and eigen frequency ωm equals
xzp =

√
~/2mωm.

In order to enhance the radiation pressure coupling,
strong coherent field is used as the pump. This allows
to linearise the dynamics around a steady classical state
and solve for quantum corrections. Moreover, we assume
this strong classical field to be resonant with the cavity
and modulated at the frequency of the mechanical oscil-
lator [53]. In this case if the mechanical frequency ωm
exceeds all other characteristic frequencies of the system,
one can perform averaging to get rid of the terms at 2ωm
to obtain the non-demolition coupling. The latter con-
dition is usually equivalent to the requirement that the
optical decay rate κ of the cavity be smaller with respect
to ωm., known as resolved-sideband regime.

After the linearization and averaging out the rapid os-
cillating terms we arrive to the QND coupling within the
optomechanical cavity with Hamiltonian that reads (de-
pending on the phase of the pump)

H = ~gXp or H = ~gY q, (1)

where g = g0
√
〈ncav〉 is the enhanced optomechanical

coupling strength, X and Y , and q and p are quadratures
of, respectively, the optical and mechanical modes which
obey usual commutation relations ([X,Y ] = i; [q, p] = i).
The mechanical displacement x can be expressed in terms
of quadratures as x/xzp = q cosωmt + p sinωmt and a
similar expression holds for the optical quadratures.

To describe the interaction of the propagating light
pulse with the optomechanical cavity we complement
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FIG. 2. Entanglement between the two mechanical modes as
a function of optical presqueezing. Solid lines correspond to
adiabatic solution; dashed lines to solution with cavity mode.
Different colors are used for different ratio of the gains K1

and K2. Losses are absent: η = 1. Highlighted is the region
of squeezing magnitudes not exceeding the value of 12.7 dB
reported in Ref. [56].

the Hamiltonian of the optomechanical interaction H1 =
−~g1X1p1 with input-output relations [55] (henceforth
we denote with index “1” or “2” quantities corresponding
to the respective cavity). The system is thus described
by the following set of equations:

q̇1 = −γ2 q1 − g1X1 + ξq1, Ẋ1 = −κX1 +
√

2κX in,

ṗ1 = −γ2 p1 + ξp1, Ẏ1 = −κY1 +
√

2κY in + g1p1

Qout =
√

2κQ−Qin, Q = X,Y. (2)

Here X in, Y in are the quadratures of the pulse with com-
mutator [X in, Y in(t′)] = iδ(t − t′), ξq,p are the quadra-
tures of mechanical noise. κ and γ are respectively optical
and viscous mechanical damping coefficients.

B. Adiabatic regime

As a first approximation we consider the system in
adiabatic regime. Given that optical decay rate exceeds
the other rates in (2) (which is typically the case in ex-
periment), one can assume that the optical mode reacts
to any changes instantaneously, which is equivalent to
putting Ẋ = Ẏ = 0 in Eqs (2). Formally this corre-
sponds to replacement of all the functions of time with
their own versions averaged over the interval with dura-
tion τ∗ such that κ� 1/τ∗ � γ, g.

Lastly, in this section we leave out the mechanical de-
coherence, setting γ = 0, ξq1 = ξp1 = 0.

With these assumptions the solution of Eqs. (2) reads

q1(τ) = q1(0)− SK1X in, X out
1 = SX in,

p1(τ) = p1(0), Yout
1 =

1

S
Y in +K1p1(0).

We have introduced the squeezing magnitude S and the
effective interaction strength K1 = g1

√
2τ/κ. We also
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have defined the input and output quadratures of the
cavity as

Qk =
1√
τ

∫ τ

0

Qk(s)ds, Q = X,Y, k = in,out.

The quadratures are normalized to obey [X k,Yk] = i.
The output field from the first cavity is then delivered

to the input of the second one through a purely lossy
channel that performs an admixture of vacuum to the
signal, therefore

Qin
2 =

√
ηQout

1 +
√

1− ηQls, Q = X,Y.

Here Qls are the quadratures of vacuum mode.
The optomechanical interaction within the second cav-

ity is described by the Hamiltonian H2 = ~g2Y2q2 and
starts at time t = τ . One can obtain the input-output
relations for the second cavity in a similar fashion. For
simplicity we assume the parameters of the second cav-
ity (except the coupling g2) to replicate the parameters
of the first one.

The optical output quadrature X out
2 is measured and

the position of the mechanical mode of the first cavity
is displaced so that the final value equals q1 = q1(τ) +
KfX out

2 .

q1 = q1(0) +K2Kfq2(τ) (3)

− SX in (K1 −Kf
√
η) + XlsKf

√
1− η,

p1 = p1(0),

q2 = q2(τ),

p2 = p2(τ)−K1K2p1(0)
√
η

− Y inK2
√
η

S
−K2

√
1− ηYls.

Similarly, we have introduced K2 = g2

√
2τ
κ here.

To approach the ideal QND interaction of the
two mechanical modes with Hamiltonian HQND =
~K1K2τ

−1p1q2 one needs to fulfill a few conditions.
First, ensure low loss (η → 1) to get rid of the noisy
mode Qls. Second, pick a proper feed-forward gain
Kf = K1/

√
η and provide high squeezing S � 1 to sup-

press the optical mode Qin.
To quantify the strength of the interaction we estimate

the entanglement between the two mechanical modes,

namely the logarithmic negativity [51] (see Appendix for
details).

In the lossless case the optimal value of squeezing
yielding maximum of entanglement is given by S =
|K2/(K1 −Kf )|. Therefore for the feedforwardKf = K1

the entanglement increases with squeezing infinitely. In
the limit of moderately strong coupling (K1,2 & 1) the
following approximation holds:

Eη ≈ − ln
1

2K1K2

√
1 +

K2
2

S2
. (4)

From this expression follows that although increase of
both S and K1,2 leads to stronger entanglement, it is
more efficient to increase K1. This can be seen from the
latter equation in (3), where the noisy mediator quadra-
ture Y in enters with a multiplier ∝ K2.

The LN for this simple model is presented as a func-
tion of the presqueezing S in Fig. 2 (solid lines). The
parameters used for simulation are κ/2π = 221.5MHz,
γ/2π = 328Hz, τ = 4.5 µs that correspond to a recent
optomechanical experiment [49] with increased pulse du-
ration τ .

From the Fig. 2 is is clear that for low squeezing the
LN is mostly defined by the interaction strength K1 in
the first cavity as it follows from (4). In the limit of high
squeezing the LN saturates to the value that is defined by
the product of gains K1K2, again in agreement with (4).

IV. ROBUSTNESS TO IMPERFECTIONS

There are two sources of hindrance that we left out for
the previous section. First is the intracavity modes that
mediate interaction between the propagating pulse and
the mechanical modes of interest. As well the intracavity
modes produce unwanted memory effects that disturb
the desired QND interaction. Second is the interaction
of mechanical modes with the thermal environment.

In this section we first study these two sources inde-
pendently and finally provide a full solution taking both
into account simultaneously.

A. Impact of the intracavity modes

To consider the effect of the intracavity modes on
the QND interface, we solve the set of dynamical equa-
tions (2) without the mechanical decoherence (γ = 0,
ξq,p = 0). The solution reads (for compactness we write
the solution for the lossless case, η = 1)
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q1 =q1(0) + q2(τ)K2Kf

(
1− 1− e−κτ

κτ

)
− S(K1 −Kf )

1√
τ

∫ τ

0

X in
1 (s)ds (5)

+ SK1

∫ τ

0

X in
1 (s)

(
e−κ(τ−s)

[
1− 4κ(τ − s)Kf

K1

])
ds+X1(0)

(
2gf
κ

[
(1− e−κτ )− 2κτe−κτ

]
− g1
κ

[
1− e−κτ

])
+X2(0)

2gf
κ

(
1− e−κτ

)
,

p1 =p1(0),

q2 =q2(τ),

p2 =p2(τ)− p1(0)K1K2

(
1 + e−κτ − 2

κτ
(1− e−κτ )

)
− K2

S

1√
τ

∫ τ

0

(
1− e−κ(τ−s)[2κ(τ − s) + 1]

)
Y in
1 (s)ds

− Y1(0)
2g2
κ

(
1− e−κτ (1 + κτ)

)
− Y2(0)

g2
κ

(1− e−κτ ),

where we defined gf ≡ Kf

√
κ/2τ .

These equations deviate from the idealized set (3) by
presence of the initial intracavity quadratures Q1,2(0).
As well the pulse quadratures Qin can no longer be elim-
inated completely by a proper choice of Kf and high
squeezing S. Moreover, in this case high squeezing apm-
lifies the noisy summand with X in degrading the inter-
face.

From the Eqs. (5) follows that in the limit κ � g1,2,f
and κτ � 1 these equations reduce to the pure QND
transformations (3). Furthermore, from the first equa-
tion it follows that the effect of the unwanted summand
∝ SX in can be reduced by decreasing K1. This is il-
lustrated in Fig. 2 where we plot the LN for solution
including the cavity modes as a function of squeezing for
different couplings. At high squeezing the full solution
deviates from the adiabatic one, however the curves with
lower K1 show this deviation at higher squeezing than
the curves with higher K1.

The proper choice of the coupling thus allows to ap-
proach the performance of the idealized adiabatic regime.
Note that in order to increase the LN it is more efficient
to increase K1 than K2. To increase the LN staying close
to the preferred adiabatic regime (and therefore a pure
QND interface between the mechanical modes) on the
contrary it is preferable to increase K2.

B. Mechanical thermal bath

Finally we consider the system in presence of the ther-
mal mechanical environment.

We assume that each of the mechanical modes is cou-
pled at rate γ to its own environment that is in a thermal
state with occupation nth (see Fig. 1). The coupling for
both modes takes place during the interaction with the
pulse. Moreover, the first mode remains coupled to the
environment during the interaction of the second system
with the pulse. Before the interaction with the pulse the
mechanical modes are in the ground state (the possibility

Eη
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FIG. 3. Entanglement as a function of squeezing in presence
of mechanical bath with mean number of phonons nth and op-
tical losses with transmittivity η. The optomechanical gains
equal K1 = 1, K2 = 8, same as for the blue line in Fig. 2

to precool mechanical oscillator close to the ground state
has been demonstrated for a number of setups [5, 57, 58]).

The thermal bath is represented in the equations (2)
by Langevin force quadratures ξq,p. These quadratures
are assumed Markovian so that

〈ξa(t)ξa(t′) + ξa(t′)ξa(t)〉 = γ(2nth + 1)δ(t− t′), a = q, p;

〈ξq(t)ξp(t′) + ξp(t
′)ξq(t)〉 = 0.

The LN in adiabatic regime with intracavity modes
eliminated is approximately given by (here K1 = K2 =
K)

Eη ≈ − ln
1

2K2

√
1 + ΓK4 +

K2

S2
(1 + ΓK4), Γ = 2γτnth.

(6)
In case of zero mechanical damping the expression is re-
duced to (4).

The LN corresponding to the full solution with all the
imperfections is plotted as a function of the squeezing S
in Fig. 3 for a set of different parameters.

The main means how the mechanical environment af-
fects the entanglement is adding the thermal noise to the
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FIG. 4. Maximal entanglement achievable with the cou-
pling rate g [in units of κ], for optomechanical parameters [49]
(blue and violet lines) and electromechanical [50] (brown and
green).

mechanical quadratures. Besides this the environment
also creates small imbalance that prohibits the perfect
cancellation of the optical mediator mode in q1 by feed-
forward. The magnitude of this imbalance is however
almost negligible.

We as well plot the LN as a function of the squeezing
for nonzero loss (1 − η 6= 0). The Fig. 3 shows that at
higher squeezing the entanglement between the mechani-
cal modes is more tolerant to the mechanical bath than to
the optical loss. Nevertheless, even with realistic loss pa-
rameters the entanglement does not vanish. We observe
that adiabatic elimination is capable to very well fit the
results for wide range of feasible squeezing of radiation.

Numerical analysis shows that the nonzero occupation
of the mechanical bath creates a threshold for the cou-
pling that allows the entanglement. At the same time,
nonzero optical loss only decreases the value of the LN, so
in case of zero occupation of the bath, the entanglement
can tolerate any finite loss.

C. Coupling optimization for experiments [49, 50]

In prior sections we focused on approaching a pure
QND interaction between the two mechanical modes.
Therefore we assumed the feedforward to be adjusted
in a way that helps to cancel most of the optical medi-
ator quadrature X in, i.e. Kf = K1/

√
η. Now we aim

for maximization of the entanglement between the two
modes. We waive the constraint on Kf and numerically
optimize the logarithmic negativity with respect to the
optomechanical gainsK1,2, feedforward strengthKf , and
the pulse duration τ given a limitation on the coupling
strength.

The results of the numerical optimization are presented
in Fig. 4. The optimal regime to achieve maximal entan-
glement appears to be very close to the regime of pure
QND between the mechanical oscillators with long pulses
κτ � 1 and Kf = K1/

√
η.

Squeezed source of radiation apparently helps to im-
prove entanglement in both opto- and electromechani-
cal scheme for large η close to perfect transmission and

smaller nth. Simultaneously, the threshold for g/κ to ob-
serve entanglement is lowered as well for higher η and
lower nth. On the other hand, for larger nth and lower
η, the squeezing of radiation is not important, however,
we can still observe entanglement of mechanical systems
if γ/κ is not too large and g/κ is sufficiently large. It
is therefore fully feasible to generate entanglement with
state-of-the-art systems.

The optomechanical setup noticeably outperforms the
electromechanical one due to higher eigenfrequency of the
mechanical oscillator and consequently lower bath occu-
pation. The high occupation of the mechanical thermal
bath in the electromechanical setup places a constraint
on the available pulse durations which in turn limits the
QND gain K.

V. CONCLUSION

We have proposed feasible way of the simplest pulsed
implementation of entangling quantum non-demolition
coupling between two distant but very similar mechanical
oscillators, implementable with both current electrome-
chanical and optomechanical setups. The method ex-
ploits squeezed light and microwave radiation and highly
efficient homodyne detection to induce maximal entan-
glement for this purely mechanical coupling. We veri-
fied robustness of the procedure under small transmis-
sion loss between the oscillators and under mechanical
thermal baths. We realized that both current optome-
chanical [49] and electromechanical [50] setups are suf-
ficient for the implementation of an extended version of
multiple QND interaction. It will allow pulsed studies of
quantum synchronization of mechanical objects [37–39].
Afterwards, a detailed study of quantum interaction of
possibly very different mechanical systems is important
for development of physical connection with quantum
thermodynamics [59–62]. The method can be further ex-
tended to controllably couple more mechanical systems
in future by different type of Gaussian interactions and
possibly challenging non-Gaussian transformations.
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Appendix: Logarithmic negativity

The mechanical modes in our system are initially in
thermal states and the optical modes are all in vacuum,
and the linear dynamic preserves the Gaussianity of the
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states of mechanical modes. A Gaussian state of a two-
mode system with quadratures f = [q1, p1, q2, p2]T is fully
determined by a vector of means 〈f〉 and a covariance
matrix (CM) with elements defined as

Vij =
1

2
〈∆fi∆fj + ∆fj∆fi〉 .

Here angular brackets denote the averaging over the
quantum state, and ∆fi ≡ fi − 〈fi〉.

Covariance matrix may be divided into 2 × 2 blocks
such that:

V =

[
V1 Vc
VTc V2

]
,

where V1 and V2 characterize internal correlations in me-

chanical subsystems. The matrix Vc stands for the corre-
lations between the first and second mechanical modes.
The diagonalisation of the CM leads to symplectic eigen-
values ν± [51]:

ν± =

√
1

2

(
Σ(V )±

√
Σ(V )2 − 4 detV

)
,

with

Σ(V ) = detV1 + detV2 − 2 detVc.

Logarithmic negativity is defined then as Eη =
max[0,− ln 2ν−] and we use it as the measure of the en-
tanglement of the system under the consideration.
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