
ARTICLE OPEN

Stroboscopic high-order nonlinearity for quantum
optomechanics
Andrey A. Rakhubovsky 1✉ and Radim Filip 1

High-order quantum nonlinearity is an important prerequisite for the advanced quantum technology leading to universal quantum
processing with large information capacity of continuous variables. Levitated optomechanics, a field where motion of dielectric
particles is driven by precisely controlled tweezer beams, is capable of attaining the required nonlinearity via engineered potential
landscapes of mechanical motion. Importantly, to achieve nonlinear quantum effects, the evolution caused by the free motion of
mechanics and thermal decoherence have to be suppressed. For this purpose, we devise a method of stroboscopic application of a
highly nonlinear potential to a mechanical oscillator that leads to the motional quantum non-Gaussian states exhibiting
nonclassical negative Wigner function and squeezing of a nonlinear combination of mechanical quadratures. We test the method
numerically by analyzing highly instable cubic potential with relevant experimental parameters of the levitated optomechanics,
prove its feasibility within reach, and propose an experimental test. The method paves a road for experiments instantaneously
transforming a ground state of mechanical oscillators to applicable nonclassical states by nonlinear optical force.
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INTRODUCTION
Quantum physics and technology with continuous variables (CVs)1

has achieved noticeable progress recently. A potential advantage of
CVs is the in-principle unlimited energy and information capacity of
a single oscillator mode. In order to fully gain the benefits of CVs
and to achieve universal quantum processing one requires an
access to a nonlinear operation2,3, that is, at least a cubic potential.
In addition, the CV quantum information processing can be greatly
simplified and stabilized if variable higher-order potentials are
available4. Variability of nonlinear gates can also help to overcome
limits for fault tolerance5. Nanomechanical systems profit from a
straightforward feasible way to achieve the nonlinearity by inducing
a controllable classical nonlinear force of electromagnetic nature on
a linear mechanical oscillator6–8. Such a nonlinear force needs to be
fast, strong, and controllable on demand to access different
nonlinearities required for an efficient universal CV quantum
processing. Therefore, the field of optomechanics9–12 is a promising
candidate to provide the key element for the variable on-demand
nonlinearity. Optomechanical systems have reached a truly
quantum domain recently, demonstrating the effects ranging from
the ground state cooling13,14 and squeezing15,16 of the mechanical
motion to the entanglement of distant mechanical oscillators17,18.
Of particular interest are the levitated systems in which the
potential landscape of the mechanical motion is provided by a
highly developed device—an optical tweezer19–22. Levitated
systems have proved useful in force sensing23,24, studies of
quantum thermodynamics25–27, testing fundamental physics28–30,
and probing quantum gravity31,32. From the technical point of view,
the levitated systems have recently demonstrated noticeable
progress in the controllability and engineering, particularly, cooling
toward33–36 and eventually reaching the motional ground state37.
Further theoretical studies of preparation of entangled states of
levitated nanoparticles are underway38,39. Besides the inherently
nonlinear optomechanical interaction met in the standard bulk
optomechanical systems the levitated ones possess the attractive
possibility of engineering the nonlinear trapping potential26,37,40–44.

Moreover, the trapping potentials can be made time-dependent
and manipulated at rates exceeding the rate of mechanical
decoherence and even the mechanical frequency45. In this manu-
script, we assume a similar possibility to generate the nonlinear
potential for a mechanical motion and control it in a fast way (faster
than the mechanical frequency). Our findings do not rely on the
specific method of how the nonlinearity is created.
Here we propose a broadly applicable nonlinear stroboscopic

method to achieve high-order nonlinearity in optomechanical
systems with time- and space-variable external force. The method
builds on the possibility to control the nonlinear part of the
mechanical potential landscape and introduce it periodically,
adjusted in time with the mechanical harmonic oscillations. Such
periodic application inhibits the effect of the free motion and the
restoring force terms in the Hamiltonian and allows approaching
the state arising from the nonlinear potential only. This is achieved
similarly to how a stroboscopic measurement enables a quantum
nondemolition detection of displacement46,47. To prove feasibility
of the method, we theoretically investigate realistic dynamics of a
levitated nanoparticle in the presence of simultaneously a
harmonic and a strong, stroboscopically applied, nonlinear
potentials enabled by the engineering of the trapping beam. To
run numerical simulations, we advance the theory of optomecha-
nical systems beyond the covariance matrix formalism appropriate
for Gaussian states. Using direct Fock-basis and Suzuki-Trotter48

simulations we model the simultaneous action of the nonlinear
potential and harmonic trap, and obtain the Wigner functions
(WFs) of the quantum motional states achievable in this system.
We predict very nonclassical negative WFs49,50 generated by
highly nonlinear quantum-mechanical evolution for time shorter
than one mechanical period. The oscillations of WF reaching
negative values, in accordance with estimates based on unitary
dynamics, witness that the overall quantum state undergoes
unitary transformation expðiVðx̂ÞτÞ sufficient for universal quan-
tum processing2. To justify it, we prove a nonlinear combination of
the canonical quadratures of the mechanical oscillator to be
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squeezed below the ground state variance which is an important
prerequisite of this state being a resource for the measurement-
based quantum computation51,52. For numerical simulations, we
focus our attention to realistic version of the key nonlinearity,
namely the cubic one with V(x)∝ x3, and find good agreement of
the predictions based on experimentally feasible dynamics with
the lossless and noiseless unitary approximation. The method
allows straightforward extension to more complex nonlinear
potentials which can be used for flexible generation of other
resources for nonlinear gates and their applications4,52. In
comparison with simultaneously developed superconducting
quantum circuits53, an advantage of our approach stems from a
much larger flexibility of nonlinear potentials. Stroboscopic driving
of an optomechanical cavity in a linear regime was considered in
ref. 54 for the purpose of cooling and Gaussian squeezing of the
mechanical mode.

RESULTS
The nonlinear stroboscopic protocol
To implement the stroboscopic method, it is possible to versatilely
use a levitated nanoparticle45 with optical6, electric7 or magnetic8

trapping. It is also possible to use a mirror equipped with a fully
optical spring55, or a membrane with electrodes allowing its
nonlinear actuation and driving56. In any of such systems, the
mechanical mode can be posed into nonlinear potential V(x),
particularly, the cubic potential V3(x)∝ x3 for the pioneering test.
In this manuscript, we focus on the experimental parameters
peculiar to the levitated nanoparticles36,37, although the principal
results remain valid for the other systems as well. We also focus
here solely on the evolution of the mechanical mode of the
optomechanical cavity, assuming that the coupling to the optical
cavity mode (blue in Fig. 1) is switched off.
The mechanical mode is a harmonic oscillator of eigenfre-

quency Ωm, described by position and momentum quadratures,
respectively, x̂ and p̂, normalized such that x̂; p̂½ � ¼ 2i. The
oscillator is coupled to a thermal bath at rate ηm. We also assume
fast stroboscopic application of an external nonlinear potential α(t)

V(x) with a piecewise constant α(t) illustrating the possibility to
periodically switch the nonlinear potential on and off as depicted
at Fig. 1(a). The Hamiltonian of the system, therefore, reads (ћ= 1)

Ĥ ¼ ĤHO þ αðtÞVðx̂Þ; ĤHO ¼ 1
4
Ωmðx̂2 þ p̂2Þ; (1)

To illustrate the key idea behind the stroboscopic method, we first
examine the regime of absent mechanical damping and decoher-
ence. In this case, the unitary evolution of the oscillator is given by
ρðtÞ ¼ Ûðt; t0Þρðt0ÞÛyðt; t0Þ, with Ûðt þ δt; tÞ ¼ exp½�iĤδt�. When
the nonlinearity is switched on permanently (α(t)= α0), the free
evolution dictated by HHO mixes the quadratures of the oscillator
which prohibits the resulting state from possessing properties of the
target nonlinear quantum state arising purely from V(x) regardless of
the nonlinearity strength (see Supplementary Note 4 for more
details). Willing to obtain a unitary transformation as close to
exp½�iVðx̂Þτ� as possible despite a constant presence of ĤHO, we
assume that the nonlinearity is repeatedly switched on for
infinitesimally short intervals of duration τ. If the duration τ is
sufficiently short for the harmonic evolution to be negligible, the
resulting evolution during τ is approximately purely caused by the V
(x) part of the Hamiltonian. To enhance the magnitude of the effect
of the nonlinear potential, Vðx̂Þ we can apply it every 2π/Ωm for short
enough intervals as shown in Fig. 1b, c) . This allows to establish an
effective rotating frame within which the nonlinearity is protected
from the effect of harmonic evolution. Realistically, the stroboscopic
application corresponds to α(t)= ∑kδτ(t− 2πk/Ωm), with k 2 Z,
where δτ is a physical approximation of Dirac delta function with
width τ much shorter than the period of mechanical oscillations:
τΩm≪ 1. Then we can consider the evolution over a number M of
harmonic oscillations as consisting of subsequent either purely
harmonic or purely nonlinear steps, and the evolution operator can
be approximately written as

Ûðt þMTm; tÞ ¼ Ûðt þ Tm; tÞ
� �M � exp½�iĤHOTm� exp½�iVðx̂Þτ�� �M

¼ exp½�iMVðx̂Þτ�:
(2)

For the last equality we used the fact that the unitary harmonic
evolution through a single period of oscillations is an identity map:
ÛHOðt þ Tm; tÞ � exp½�iĤHOTm� ¼ 1̂. Motion of a real mechanical
oscillator can be approximated by a harmonic unitary evolution
with good precision because of very high quality of mechanical
modes of optomechanical systems35,36,57. Equation (2) shows that
the effect of sufficiently short pulses of the strong nonlinear
potential timed to be turned on precisely once per a period of
mechanical oscillations M times, is equivalent to an M-fold
increase of the nonlinearity.
A further improvement is possible by noting that undamped

harmonic evolution over a half period simply flips the sign of the
two quadratures ðx̂; p̂Þ 7!�ðx̂; p̂Þ. Therefore, it is possible to
similarly apply the potential twice per period, switching its sign
each second time. This can be formalized as setting
αðtÞ ¼ P

kð�1Þkδτðt � πk=ΩmÞ; k 2 Z. In this case,

Ûðt þ Tm; tÞ ¼ e�iĤHOTm=2eþiVðx̂Þτe�iĤHOTm=2e�iVðx̂Þτ ¼ e�2iVðx̂Þτ ; (3)

and therefore, after M periods

Ûðt þMTm; tÞ ¼ exp½�i � 2M � Vðx̂Þτ�: (4)

The idealized scheme proposed above in reality faces two
potentially deteriorative factors: the finiteness of the duration of
the nonlinearity τ, and the mechanical decoherence caused by the
thermal environment. We take a proper account of these two

Fig. 1 Scheme of the proposed stroboscopic method. a A levitated
optomechanical system as an illustration of mechanical oscillator in
a nonlinear potential. A dielectric subwavelength particle (P) is
trapped by a tweezer (not shown). The particle feels a total potential
U(x)=Ωmx2/4+ α(t)V(x) that is a sum of the quadratic (green) and
the nonlinear (orange, here: cubic) parts, both provided by the
trapping beam. The particle can be placed inside a high-Q cavity
and probed by the laser light. b, c Stroboscopic application of
nonlinear potential. The nonlinear part of the potential is switched
on for only a short fraction of the mechanical period (orange
segments). The quadratic trapping potential (green segments) is
present throughout all the evolution. d Suzuki-Trotter simulation of
stroboscopic evolution of the mechanical mode. In the figure,
orange segments represent action of the nonlinear potential, empty
and filled green segments correspond, respectively, to unitary and
damped harmonic evolution.
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factors by considering the evolution as consisting of two kinds: (i)
unitary undamped dynamics in a sum of the quadratic and
nonlinear potentials, (ii) damped harmonic evolution between
those. These two kinds of evolution are subsequently repeated, as
shown in Fig. 1b, c. We develop an advanced method based on
Suzuki-Trotter simulation (STS) to simulate the quantum state of a
realistic optomechanical system after the application of our
proposed protocol. It is worth noting that the STS is typically
used to approximately achieve a novel evolution Û from
experimentally available exact unitaries58,59. In our work, we use
STS to simulate and justify that the experimentally available
compound evolution Û can approximate one of its building blocks
ÛNLðδtÞ � expð�iVðxÞδtÞ. To verify the convergence of STS we
also perform simulations in the Fock-state basis that allow direct
computation of the propagator corresponding to the Hamiltonian
(1). Fock-state-basis simulations unfortunately do not grant access
to phase-space distributions such as WF60 which makes use of STS
the primary strategy. Excellent agreement between the very
distinct methods (STS and Fock-state-basis simulations) indicates
that our results are correct. The details of the simulation methods
are presented in Supplementary Notes 1 and 2.
We omit damping and thermal decoherence during the fast

unitary action of the combined potential. Such applications are
assumed to happen every half of a mechanical oscillation and
have durations much shorter than the mechanical period,
therefore, due to high quality of state-of-the-art mechanical
oscillators, such omission is justified. The joint action is simulated
using STS and verified by Fock-state-basis simulation. Between the
applications of the nonlinear potential V(x) the mechanical
oscillator experiences damped harmonic evolution described by
the linear Heisenberg-Langevin equations

_x ¼ Ωmp; _p ¼ �Ωmx � ηmpþ
ffiffiffiffiffiffiffiffi
2ηm

p
ξ; (5)

where ξ is the quantum Langevin force, obeying ξðtÞ; xðtÞ½ � ¼
i

ffiffiffiffiffiffiffiffi
2ηm

p
and 1

2 ξðtÞ; ξðt0Þf gh i ¼ ð2nth þ 1Þδðt � t0Þ with nth being the
mean occupation of the bath. The experimentally accessible value
of the heating rate Hm is given by Hm= ηmnth. The density matrix
ρ(Tm/2) of the particle after half of a period of oscillations
including the action of the nonlinear potential and subsequent
damping can be formally written as

ρðτÞ ¼ N ρð0Þ½ � ¼ D Ûðτ; 0Þρð0ÞÛyðτ; 0Þ
h i

: (6)

where Ûðτ; 0Þ describes the particle’s unitary dynamics in
combined potential, and D½ � � indicates the mapping performed
by the damping. Generalization of (6) to include the second half of
the period, and the subsequent generalization to multiple periods,
is straightforward.
Using these advanced numerical tools, further elaborated in

“Methods” we evaluate the quantum state of the mechanical
oscillator after the protocol and explore the limits of the
achievable nonlinearities in the optomechanical systems that are
accessible now or are within reach.

Application to the cubic nonlinearity
Motivated by the role of cubic nonlinearity for the universal
continuous-variable quantum processing, we illustrate the devised
method by numerically evaluating the evolution of a levitated
particle under a stroboscopic application of a cubic potential V
(x)∝ x3. The nonlinear phase gate e−iV(x) is a limit case of motion, it
modifies only momentum of the object without any change of its
position. This nondemolition aspect is crucial for use in universal
quantum processing. A nonlinear phase state (particularly, the
cubic phase state introduced in3) as the outcome of evolution of
the momentum eigenstate p ¼ 0j i in a nonlinear potential V(x) is

defined as

γVj i /
Z

dx eiVðxÞτ xj i; (7)

where V(x), is a highly nonlinear potential, and xj i the position
eigenstate x̂ xj i ¼ x. The state (7) requires an infinite squeezing
possessed by the ideal momentum eigenstate before the
nonlinear potential is applied. More physical is an approximation
of this state obtained from a finitely squeezed thermal state ρ0(r,
n0), ideally, vacuum, by the application of V:

ρðV ; r; n0Þ ¼ eiVðx̂Þτρ0ðr; n0Þe�iVðx̂Þτ : (8)

The initial state ρ0 is the result of squeezing a thermal state with
initial occupation n0

ρ0ðr; n0Þ ¼ ŜðrÞρ0ð0; n0ÞŜ
yðrÞ (9)

where ŜðrÞ ¼ exp½12 r�ðâÞ2 � 1
2 rðâyÞ

2� is a squeezing operator
(â ¼ ðx̂ þ ip̂Þ=2), and the initial state ρ0 is thermal with mean
occupation n0. Phase of the squeezing parameter r= ∣r∣eiθ
determines the squeezing direction. When n0= 0, ∣r∣→+∞, and
θ= π, the initial state is infinitely squeezed in p, and Eq. (8)
approaches the ideal cubic state (7).
The quantum state obtained as a result of the considered

sequence of interactions approximates the ideal state given by Eq.
(7). The quality of the approximation can be assessed by
evaluating the variance of a nonlinear quadrature p− λ x2, or
the cuts of the WFs of the states. A reduction in nonlinear
quadrature variance below the vacuum is a necessary condition
for application of these states in nonlinear circuits51,52. On the
other hand, the phase-space interference fringes of the WF
reaching negative values are a very sensitive witness of quantum
non-Gaussianity of the states used in the recent experiments61–64.
Fidelity happens to be an improper measure of the success of the
preparation of the quantum resource state65 because it does not
predict either applicability of these states as resources or their
highly nonclassical aspects.
A noise reduction in the cubic phase gate can be a relevant first

experimental test of the quality of our method. The approximate
cubic state obtained from a squeezed thermal state (that is, the
state (8) with V(x)= γx3/(6τ)) should possess arbitrary high
squeezing in the variable p− λ x2 for n0= 0 given sufficient
squeezing of the initial mechanical state. The state (8) obtained
from a squeezed in momentum state, has the following variance
of the nonlinear quadrature

σρ3ðλÞ � Trðρ p̂� λx̂2
� �2Þ � Trρðp̂� λx̂2Þ� �2 ¼ vth

s2
þ 2 λ� γð Þ2 s2vth

� �2
;

(10)

where vth= 2n0+ 1 is the variance of each canonical quadrature
in the initial thermal state before squeezing, and s= er is the
magnitude of squeezing. An important threshold is the variance of
the nonlinear quadrature attained at the vacuum state (n0= 0,
s= 1)

σvac
3 ðλÞ ¼ 1þ 2λ2: (11)

Application of a unitary cubic evolution to the initial vacuum
state displaces this curve along the λ axis by γ. Further, as follows
from Eq. (10), squeezing the initial state allows reducing the
minimal value of σ3, and increase of the initial occupation n0
causes also increase of σ3. Suppression of fluctuations in the
nonlinear quadrature is a convenient figure of merit because it is a
direct witness of the applicability of the quantum state as a
resource for measurement-based quantum information proces-
sing51,52 and a witness of non-classicallity66. It can be evaluated in
an optomechanical system with feasible parameters using pulsed
optomechanical interaction66 without a full quantum state
tomography.
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In Fig. 2a, we show the variance σ3 at the instants t=MTTm/2.
Each of the curves takes into account also the interaction with the
thermal environment lasting Tm/2 after each application of the
nonlinearity. The heating rate parameter H0= 4πHm/Ωm assumes
value H0= 2 × 10−3. For an oscillator of eigenfrequency Ωm=
2π × 100 kHz and Q= 106 is equivalent to occupation of the
environment equal to nth ≈ 107 phonons. This is the equilibrium
occupation of such an oscillator at the temperature of 50 K. A
recent experiment of ground state cooling of a levitated
nanoparticle37 reported the heating rate corresponding to H ≈
102H0. A proof of robustness of the method against such heating
is in the Supplementary Note 3.
Thin lines with markers show the analytic curves defined by Eq.

(10) for the corresponding values of γ. The good quantitative
correspondence between the approximate states resulting from
the realistic stroboscopic application of nonlinear potential and
the analytic curves again proves the validity of the stroboscopic
method. Importantly, each of the curves has an area where it lies
below the corresponding ground-state level σ3vac. This means
each of the corresponding states gives advantage over vacuum if
used as ancilla for the cubic gate. The dashed lines show the
simulated quantum states obtained from the same initial state by
longer unitary evolution according to the full Hamiltonian from Eq.
(1), that is e�iĤnτρeiĤnτ where n= 1, 2, 3 for blue, yellow and red
correspondingly. Further divergence from ideal than that of the
ones corresponding to the stroboscopic method witnesses an
advantage of the latter in generation of the resource for the
measurement-based computation.
The stroboscopic application of a fixed limited gain nonlinearity,

therefore, indeed allows amplification of nonlinearity in accor-
dance with Eq. (4). Importantly, even despite requiring longer

evolution in a noisy environment, the stroboscopic method allows
better amplification than a unitary longer application of the
nonlinearity in presence of the free evolution (/ p̂2) and harmonic
(/ x̂2) terms in the Hamiltonian.
The non-Gaussian character of the prepared quantum state can

be witnessed via its WF W(x, p) which for a quantum state ρ
reads67

Wðx; pÞ ¼ 1
2π

Z 1

�1
dy e�ipy x þ yjρjx � yh i: (12)

WF shows a quasiprobability distribution over the phase space
spanned by position x and momentum p and its negativity is a
prerequisite of the non-classicallity of a quantum state. In Fig. 2b
are WFs W(0, p) of the mechanical oscillator computed for the
same approximate states as in the panel (a). The WF of an ideal
cubic phase state, i.e. the state given by Eq. (7) for V(x)= x3γ/(6τ),
reads3,50

WCPSðx; pÞ / Ai
4
γ

	 
1=3

γx2 � p
� �" #

; (13)

where Ai(x) is the Airy function. This function with apparent non-
Gaussian shape in the phase space exhibits fast oscillations
reaching negative values in the positive momentum for any γ > 0.
The WFs of the states obtained by application of the stroboscopic
protocol approach the one of Eq. (8). Each of them exhibits areas
with negative values which proves quantum non-Gaussian
character of the resulting state. Moreover, with increased number
of stroboscopic applications involved, the resulting approximate
state corresponds to stronger nonlinearity. For the last curve
where MT= 3 we also show the result of an idealized instanta-
neous unitary application of an equal total nonlinearity by a cyan
line with markers which is indistinguishable from the line for the
approximate evolution. For this pair of curves we also have an
estimate for the overlap Tr½ρredρcyan�=Tr½ρ2cyan� ¼ 0:9877. Despite
an excellent overlap of the ideal and approximate WFs, the
important resource, squeezing σ3 shows a noticeable deviation
from the ideal scenario. It is for this reason that we choose the
squeezing σ3 as the main figure of merit for the protocol.

DISCUSSION
In this article, we have proposed and theoretically analyzed a
protocol to create a nonlinear motional state of the mechanical
mode of an optomechanical system with controllable nonlinear
mechanical potential. The method uses the possibility to apply the
nonlinear potential to the motion of mechanical object in a
stroboscopic way, twice per a period of oscillations. This way of
application allows reducing the deteriorative effect of the free
oscillations and approach the effect of pure action of nonlinear
potential. In contrast to other methods of creating nonclassical
states by a continuous evolution in presence of nonlinear terms in
the Hamiltonian68–70, our method allows approaching the states
that approximate evolution according to the unitary eiV(x) where V
(x) is the nonlinear potential profile. We tested our method on a
cubic nonlinearity / x̂3 though the method is applicable to a wide
variety of nonlinearities. Our simulations prove that application of
the protocol allows one to obtain the squeezing in the nonlinear
quadrature below the shot-noise level even if the initial state of
the particle is not pure. The nonlinear state created in a
stroboscopic protocol clearly outperforms as a resource the
vacuum for which the bound (11) holds. Moreover, the strobo-
scopic states approximate the one defined by Eq. (8) obtained in
absence of the free rotation and thermal decoherence. We also
verify that the stroboscopic application of the cubic nonlinear
potential generates nonclassical states under conditions that are
further from optimal than the ones of Fig. 2. In particular, we find
that the heating rate Hm can be increased approximately 100-fold

Fig. 2 Results of the simulations. Results of stroboscopic applica-
tion of cubic nonlinear potential V= γx3/(6τ) to the squeezed
thermal state (initial occupation n0= 0.05, squeezing s= 1.2) over
multiple (MT= 1, 2, or 3) halves of mechanical periods. a Squeezing
of nonlinear quadrature. Thick lines correspond to stroboscopic
method with realistic parameters and thermal noise, thin lines, to
purely unitary application of the nonlinearity. Dashed lines
correspond to the result of evolution driven by the full Hamiltonian
Ĥ (1) from the same initial state over time τ, 2τ, and 3τ respectively.
b Wigner function of motional states. Solid lines correspond to the
same states from (a). Cyan line with markers (overlapping with solid
red line) shows the unitary application of nonlinearity. Other
parameters are as follows: potential stiffness γ= γ0= 0.2, application
duration τΩm=Θ=Θ0= π/100, environmental thermal heating rate
parameter H0= 4πHm/Ωm= 0.002.

A.A. Rakhubovsky and R. Filip

4

npj Quantum Information (2021)   120 Published in partnership with The University of New South Wales



until the curve σ3(λ) fails to overcome the vacuum boundary 1+
2λ2. We are able to prove that when the duration of the
application τ is increased tenfold such that the corresponding
product V(x)τ remains constant, (that is, a less stiff potential is
applied stroboscopically for proportionally longer time intervals),
the resulting nonlinear state as well shows squeezing in σ3. This
proves robustness of the method to the two major imperfections.
We have shown the method to work for the parameters inspired

by recent results demonstrated by the levitated optomechanical
systems71,72. The optical trap with a cubic potential has been already
used in the experiments43,44. Levitated systems73, including electro-
mechanical systems74, have recently shown significant progress in
the motional state cooling35–37 and feedback-enhanced operation34

which lays solid groundwork of the success of the proposed
protocol. The authors of ref. 44 report the experimental realization of
the potential V(X)= μX3/6 with μ ≈ 8kBTμm−3, where X ¼
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=ð2mΩmÞ

p
is the dimensional displacement of the oscillator,

m is its mass, kBis the Boltzmann constant and T temperature.
From this value we can make a very approximate estimate for the
nonlinear gain γ= μ(ћ/(2mΩm))3/2τ ≈ 1.2 × 10−3 assuming duration
τ= π/(50Ωm), temperature T= 300 K, frequency Ωm= 2π × 1 kHz,
and a mass m= 4 × 10−15 g of a silica nanoparticle of 70 nm
radius.
Experimental implementation of the proposed method can

guarantee preparation of a strongly non-Gaussian quantum
motional state. Further analysis of such a state will require either
a full state tomography or better suited well-tailored methods to
prove the nonclassicality75. An analysis of the estimation of the
nonlinear mechanical quadrature variance via pulsed optomecha-
nical interaction can be found in ref. 66. The optical read out can
be improved using squeezed states of light76. This experimental
step will open applications of the proposed method to other
nonlinear potentials relevant for quantum computation4,51,52,77,
quantum thermodynamics78,79 and quantum force sensing80,81.
In our simulations, we focused solely on the dynamics of the

mechanical mode and assumed the conventional optomechanical
interaction absent. This interaction, well developed in recent years,
provides a sufficiently rich toolbox that allows incorporation of the
mechanical mode into the optical circuits of choice9. As an option,
a prepared nonlinear state can be transferred to traveling light
pulse76 using optomechanical driving. In a more complicated
scenario, one can add optomechanical interaction to the strobo-
scopic evolution to obtain even richer dynamics. A complete
investigation of such dynamics, however, goes beyond the scope
of the present research focused on the preparation of nonlinear
motional states.
In parallel with the experimental verification, the stroboscopic

method can be used to analyze other higher-order mechanical
nonlinearities such as V(x)∝ x4 or tilted double-well potentials
required for tests of recently disputed quantum Landauer
principle82, counter-intuitive Fock state preparation83 and
approaching macroscopic superpositions84–87.

METHODS
Tools of numerical simulations
The Eq. (6) approximates the damped evolution of an oscillator in a
nonlinear potential by a sequence of individual stages of harmonic,
nonlinear and damped harmonic evolution (see Fig. 1). Below we elaborate
on how it is possible to simulate such dynamics using WF in the phase
space, density matrix in position, momentum and Fock basis.
First, we evaluate the action of the nonlinearity during the stroboscopic

pulse. While the nonlinearity is on, the Hamiltonian of the system reads

Ĥ ¼ ĤHO þ Vðx̂Þ ¼ Ĥp þ Ĥx ; (14)

where Ĥp ¼ Ωm
4 p̂2; and Ĥx ¼ Ωm

4 x̂2 þ γ
6 x̂

3:

Our important simulation tool is the STS (see ref. 48) for Û

Ûðt þ τ; tÞ ¼ exp½�iðĤHO þ Vðx̂ÞÞ τ
N
�

h iN
¼ ÛHOðτNÞÛNLðτNÞ þ O

τ

N

� �2
	 
 �N

;

(15)

where ÛHOðδtÞ � expð�iHHOδtÞ, ÛNLðδtÞ � expð�iVðxÞδtÞ, N is called the
Trotter number. The accuracy of the approximation is, thereby, increasing
with decreasing τ/N. Despite τ being now sufficiently large to take into
account noticeable free rotation through an angle Ωmτ in the phase space,
we still assume that τ is much shorter than the mechanical decoherence
timescale, set by the heating rate Hm. This is well justified for the current
experiments33,36,37, also see Supplementary Note 2. The STS requires the
summands forming the Hamiltonian to be self-adjoint which is not always
the case of V(x), in particular V(x)∝ x3. We take the necessary precautions
by considering such nonlinearities over only short time in a finite region of
the phase space. Thus we cautiously take care of the quantum motional
state being limited to this finite region. To further verify the correctness of
numerics via STS, we cross-check it using numerical simulations in Fock-
state basis.
Equation (14) shows the two possibilities to split the full Hamiltonian

into summands to use the STS. We use these two possibilities to compute
independently the mechanical state in order to verify the correctness of
the STS in Supplementary Note 1.
First, we start from a squeezed thermal state ρ(0), which has a

representation by the WF in the phase space

Wthðx; p; n0; sÞ ¼
exp � 1

2
x=sð Þ2þ psð Þ2
2n0þ1

h i� �
2πð2n0 þ 1Þ : (16)

The WF corresponding to a quantum state ρ is defined67 as

Wðx; pÞ ¼ 1
2π

Z 1

�1
dy e�ipy x þ yjρjx � yh i; (17)

and the corresponding density matrix element can be obtained from the
WF by an inverse Fourier transform. It is therefore possible to extend this
approach to any W(x, p) beyond the Gaussian states.
The evolution of a state ρ under action of a Hamiltonian proportional to

a quadrature q̂ can be straightforwardly computed in the basis of this
quadrature, where it amounts to multiplication of density matrix elements
with c-numbers:

qh je�iĤqðq̂ÞtρeiĤqðq̂Þt q0j i ¼ qjρjq0h ie�iðHqðqÞ�Hq0 ðq0 ÞÞt : (18)

In particular, the nonlinear evolution reads

xh jÛNLðδtÞρÛy
NLðδtÞ x0j i ¼ xh jρ x0j ie�i½VðxÞ�Vðx0 Þ�δt: (19)

The undamped harmonic evolution driven by ĤHO can be represented
by the rotation of WF in the phase space. A unitary rotation through an
angle θ=Ωmδt in the phase space maps the initial WF W(x, p; t) onto the
final W(x, p; t+ δt) as

Wðx; p; t þ δtÞ ¼ Wðx cos θ� p sin θ; p cos θþ x sin θ; tÞ: (20)

The unitary transformation of the density matrix can be as well
computed in the Fock state basis.
Finally, damped harmonic evolution of a high-Q harmonic oscillator over

one half of an oscillation can also be evaluated in the phase space as a
convolution of the initial WF W(x, p; t) with a thermal kernel

Wðx; p; t þ π

Ω
Þ ¼

Z Z 1

�1
du dv Wiðx � u; p� v; tÞWBðu; vÞ; (21)

where the expression for the kernel reads

WBðu; vÞ ¼ 1
2πσth

exp � u2 þ v2

2σth

 �
; (22)

with σth= (2nth+ 1)2πηm/Ωm, where nth ≈ kBT/(ћΩm) is the thermal
occupation of the bath set by its temperature T. In terms of the heating
rate Hm, σth= 4πHm/Ωm. Equation (21) is obtained by solving the joint
dynamics of the oscillator and bath followed by tracing out the latter. The
detailed derivation of Eq. (21) can be found in Supplementary Note 2.
Using these techniques, one can evaluate the action of the map N

defined by Eq. (6) on the state of the quantum oscillator. This yields the
quantum state of the particle after one half of a mechanical oscillation.
Repeatedly applying the same operations, one can obtain the state after
multiple periods of the mechanical oscillations. Our purpose is then to
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explore the limits of the achievable nonlinearities in optomechanical
systems that are accessible now or are within reach.
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