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Processing quantum information on continuous variables requires a highly nonlinear element in
order to attain universality. A measurement-induced method for applying an element of this type,
the cubic phase gate, for quantum circuits involves the use of a non-Gaussian ancilla known as
the cubic phase state. A necessary condition for the cubic phase state is that noise in a selected
nonlinear quadrature should decrease below the level of classical states in order to to obtain the
cubic phase gate with less noise than classical cubic nonlinearities. A reduction of the variance in
this nonlinear quadrature below the ground state of the ancilla, a type of nonlinear squeezing, is
the resource embedded in these non-Gaussian states and a figure of merit for nonlinear quantum
processes. Quantum optomechanics with levitating nanoparticles trapped in nonlinear optical po-
tentials is a promising candidate to achieve such resources in a flexible way. We provide a scheme
for reconstructing this figure of merit in quantum optomechanics, analysing the effects of mechani-
cal decoherence processes on the reconstruction and show that all mechanical states which exhibit
reduced noise in this nonlinear quadrature are nonclassical.

I. INTRODUCTION

Quantum states of oscillators which, in principle, have
an arbitrarily large information capacity are attractive
platforms for quantum technology. Quantum informa-
tion processing with continuous variables (CV) is there-
fore a fast growing topic of research, at first conceptu-
alised in the modes of the electromagnetic field [1], then
further finding a foothold in the vibrational modes of
trapped ions [2] and still further in the centre of mass
motion of a macroscopic oscillator coupled to radiation
pressure [3]. This last, the field of optomechanics, em-
bodies a large scope of research into quantum technolo-
gies with proposals for sensing [4–6], quantum commu-
nication [7–9], quantum computation (particularly the
measurement based model) [10, 11], and tests of quan-
tum gravity [12] and foundations [13, 14]. Linearised
quantum optomechanics is very well established, both
theoretically and experimentally with various platforms
having demonstrated ground state cooling [15, 16] and
the preparation of squeezed states in the mechanical por-
tion of the system [17–19]. The time is ripe then, to begin
looking for ways to add nonlinear mechanical effects to
these achievements.

At their most elevated station nonlinear elements are
a necessary component of universal quantum computa-
tion with CV [1, 20]. However even before one goes so
far, nonlinearity can be a useful resource for a variety
of nascent quantum applications. To be more specific,
there are several no-go theorems for Gaussian quantum
information processing [21, 22] including entanglement
distillation [23–25] and error correction [26]. Alongside
these are some known applications for non-Gaussian re-
sources [27, 28] such as estimation [29], cloning [30], tele-
portation [31] and Bell inequality testing [32]. In op-
tomechanics, one has the advantage that the dynamics
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between optics and mechanics is intrinsically nonlinear.
While the bare single photon-phonon coupling is usually
too weak to be considered useful for quantum technology,
the standard linearisation is an approximation that has
the potential to be extended to a nonlinear regime involv-
ing the square of the mechanical position. Glimmers of
such a future are visible in current electromechanics ex-
periments [17, 18], and proposals for taking advantage of
the rich dynamics this extension entails already exist [33–
35]. Moreover, optomechanical couplings involving only
the square of the mechanical position have been explored
in multiple experiments [36–40]. The burgeoning class
of experiments called levitated optomechanics also pro-
vides the opportunity to employ nonlinear potentials as
external drivings for the oscillator [41–46]. Various pro-
posals for the generation of nonlinear and nonclassical
states are extant in the literature [33, 47–51]. Progress
in this field is moving very fast and therefore it is im-
portant to analyse proof-of-principle possibilities to es-
timate what we refer to as the nonlinear squeezing in
experiments. Therefore we consider in the abstract os-
cillators that have achieved nonlinearity directly through
the coupling (as in membrane-in-the-middle setups), are
intrinsically nonlinear (anharmonicity) or are prepared in
states only achievable through the application of a non-
linear potential.

In particular the preparation of a quantum cubic phase
state of a mechanical oscillator has been proposed using a
variety of methods, including dissipative engineering [52],
stroboscopic pulses [53] and externally applied nonlinear
potentials [54]. These methods could be extended to also
generate other higher order quantum nonlinearities. The
preparation of cubic phase states can be quite challeng-
ing and their verification resource intensive as can be
intuitively seen from the complexity of their represen-
tation in phase space. Additionally, states with such a
complex representation in phase space and detailed non-
classical features are usually easily smeared out by noise
processes.

In this article therefore, in order to evaluate the non-
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linearity of the prepared state, we propose a method to
directly estimate the squeezing of a nonlinear quadra-
ture, particularly for mechanical oscillators prepared in
a cubic phase state. Normally squeezing means a re-
duction of the fluctuations in the variance of a variable
below the value corresponding to the ground state. In
linear oscillators, if there is squeezing it is always present
in a variable which is a linear combination of position
and momentum. At the same time squeezed states are
nonclassical from the point of view of classical coherence
theory [55]. In nonlinear oscillators, squeezing (i.e. fluc-
tuations below the level set by the ground state) can be
found in a nonlinear combination of position and momen-
tum even if not present in the linear case. We refer to
this new object, first introduced in Ref. [56] for light, as
nonlinear squeezing to make clear the distinction from
the linear squeezing in previous experiments described
by linearized quantum dynamics in the Heisenberg pic-
ture [16–19]. The salient point is that nonlinear squeez-
ing is necessary for the application of the cubic phase
gate [56]. Moreover, pure states which are nonlinearly
squeezed are inherently nonclassical even for weak nonlin-
earities. We demonstrate that the extent to which states
possess the property of nonlinear squeezing (and there-
fore nonclassicality) can be reconstructed via homodyne
detection of the output cavity field without full tomogra-
phy of the mechanical state and that this reconstruction
is robust against noise for a wide range of experimental
parameters. It follows that the reconstruction simulata-
neously allows direct identification of the nonclassicality
of the mechanical cubic phase state.

II. RESULTS

A. Nonlinear Squeezing and Nonclassicality

Squeezed states with the variance Var(pLQ) of the
quadrature pLQ = p − λq, where λ ∈ R is a parameter
and q, p are canonical position and momentum operators,
suppressed below the ground state are a useful resource
to implement quadratic nonlinearities in circuits using
Gaussian measurements [57–59]. Advantageously, the
purity of these squeezed states is irrelevant and only the
variance matters. All such squeezed states are nonclassi-
cal [55], therefore their coherence effects go beyond clas-
sical states of oscillators. To deterministically implement
higher than quadratic nonlinearities for quantum circuits,
the measurement-induced strategy requires new ancillas
beyond squeezed states. The principal example of such
an implementation is the nonlinear cubic phase gate re-
quired for universal quantum computing with continu-

ous variables [60]. The cubic phase state eiγGq
3 |p = 0〉,

in which |p = 0〉 denotes a zero momentum eigenstate,
may act as a resource for implementing the cubic phase
gate with nonlinearity strength γG as in the protocol of
adaptive non-Gaussian measurements [56]. The unstable
cubic potential depicted in Fig. 1 gives rise to a com-
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FIG. 1. A sketch of the proposed setup for a levitating
nanoparticle motivated by the experiments in Refs [43, 46].
The particle is first prepared in a cubic phase state, for ex-
ample through the application of a Nonlinear Trapping Po-
tential [45]. Afterwards, invoking linear optomechanics and
applying a Two Tone Drive on the red and blue sidebands si-
multaneously provides the mechanism for readout of the non-
linear squeezing by inducing a QND interaction between the
cavity momentum and a single mechanical quadrature. Sub-
sequent to the interaction the output cavity field (dissipating
at a rate κ) is measured via homodyne detection (HD). From
the measured moments of quadratures the nonlinear squeez-
ing and nonclassicality of mechanical states can be estimated.

plex non-Gaussian Wigner function, also present in the
figure, of the motional state with negative values indicat-
ing a highly nonclassical nature. These negative values
of the Wigner function are sensitive to loss and noise in
state preparation and estimation. Fortunately, the non-
linear measurement strategy implicates that the nonlin-
ear quadrature pNLQ = p − 3γGq

2 is the only relevant
feature of the cubic phase state that allows the protocol
to be carried out. Ideally, it is required that pNLQ vanish
for the resource state consumed during the measurement
process. If this is the case the cubic phase gate is applied
in the output of the strategy. Importantly, neither the
purity nor any variable other than pNLQ is relevant for
this implementation.

In practice the perfect cubic phase state is inaccessible,
being unphysical, and approximations to the ideal case
must be used. This unphysical character manifests itself
with two aspects: the infinite squeezing of the momen-
tum eigenstate |p = 0〉 and the unbounded character of
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the cubic potential. These properties are approximated
using finite squeezing and an appropriate bounded ver-
sion of the unbounded cubic potential respectively. An
alternative solution is to search for other states sharing
the relevant properties [56]. Such states also form a re-
source for implementing the gate and our first step is
to define a figure of merit that captures what makes a
state an effective resource. These states are also funda-
mentally interesting, being witnesses of the difficult to
achieve and highly unstable nonlinear dynamics already
studied for classical mechanical systems [45, 54].

Ideally, the resource should have a vanishing first mo-
ment of pNLQ in order to avoid systematic displacements.
Nevertheless the first moment is somewhat trivial as non-
zero values can be corrected via classical displacements
on the quadratures of the output state. More impor-
tantly, if the fluctuations of the nonlinear quadrature
pNLQ are below the level set by the vacuum then we
observe nonlinear squeezing. This means that the ap-
plication of the cubic phase gate will have a noise perfor-
mance superior to that of the ground state of a system
in a quadratic potential. Operationally this guarantees
that the nonlinear phase gate will work better than any
classical counterpart based on classical coherent states
and nonlinear adaptive feedforward control. Define the
function describing these fluctuations as

V [ρ](λ) := Var(pNLQ) ≡ 〈(p− 3λq2)2〉ρ − 〈p− 3λq2〉2ρ ,
(1)

Note that the ideal cubic phase state eiγGq
3 |p = 0〉 has

the value zero for both the mean and variance of pNLQ

at λ = γG. Evaluated on the vacuum, one finds

V [|0〉 〈0|](λ) =
1

2
(1 + 9λ2) , (2)

which is never zero and increases for larger values of the
nonlinear term.

In order for a state ρ to qualify as a resource for im-

plementing the cubic phase gate eiγGq
3

that is superior
to using the ground state it must satisfy the property
V [ρ](γG) < V [|0〉 〈0|](γG) i.e. the resource performs bet-
ter than the ground state in performing the gate. In gen-
eral there will be a range of values of λ over which the
resource surpasses the vacuum in quality. The greater
the nonlinear squeezing, the greater the value of the
resource for the measurement-induced implementations.
This evaluation can be extended to compare the resource
with any classical state represented by a mixture of co-
herent states used to implement the phase gate. As a
consequence, there is a threshold for nonclassical states
of the oscillator which is always surpassed by states with
reduced fluctuations in pNLQ.

To analyse noise reduction in the resource state achiev-
able by nonclassical states, we use a threshold for non-
classicality which is derived from the minimum of the
second moment of pNLQ over the coherent states. We
note that any state can be displaced in phase space in
order to set the first moment of pNLQ directly to zero. In

particular, a displacement in momentum can be chosen
such that

〈p〉 = 3λ 〈q2〉 . (3)

Firstly, since displacements do not produce nonclassical-
ity, we can transform any state in order to satisfy this
condition without the risk of evaluating a classical state
as nonclassical. States satisfying this condition have a
variance in pNLQ which is equal to the second moment,

V2[ρ](λ) = 〈(p− 3λq2)2〉ρ . (4)

Such a function is a linear functional of the state ρ and we
take advantage of this in order to elucidate the nonclassi-
cality threshold. Secondly, displacements in momentum
do not change the value of V [ρ](λ) for any arbitrary ρ.
That is,

V [ρ](λ) = V2[ρD](λ) (5)

where ρ→ ρD indicates any displacement in momentum.
We will use this property to link thresholds for the vari-
ance (nonlinear squeezing) and for the second moment
(nonclassicality).

The threshold for nonclassicality is given by

V2[|β〉 〈β|](λ) =
1

2
(1 + 9λ2) , (6)

where the coherent state |β = 3iλ
2
√

2
〉 is the minimum of

V2(λ) over the coherent states. Note that this β is the
momentum displacement required to modify the ground
state to one in which the first moment of pNLQ van-
ishes. It should also be noted that the coherent state
which minimises this function depends explicitly on the
parameter λ. To see directly that this constitutes the
threshold for nonclassicality consider that an arbitrary
mixture of coherent states may be represented by the
Glauber-Sudarshan P -function, with P (α) ≥ 0 i.e. ρα =∫
d2αP (α) |α〉 〈α| with d2α = dRe(α)dIm(α). Then, the

following inequalities hold

1

2
(1 + 9λ2) ≤ 〈α|p2

NLQ|α〉 (7)

⇒ 1

2
(1 + 9λ2)

∫
d2αP (α) ≤

∫
d2αP (α) 〈α|p2

NLQ|α〉
(8)

⇒ 1

2
(1 + 9λ2) ≤ tr(p2

NLQρα) . (9)

Notably, the threshold for nonclassicality is identi-
cal to the threshold for nonlinear squeezing, that is
V [|0〉 〈0|](λ) = min|α〉(V2) = 1

2 (1 + 9λ2).
Now we may demonstrate the equivalence between

nonlinear squeezing and NLQ-derived nonclassicality. By
definition, if a state contains nonlinear squeezing it sat-
isfies

V [ρ](λ) < V [|0〉 〈0|](λ) , (10)
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for some λ. We have noted that ρ can be displaced in
momentum (ρ→ ρD) so that V [ρ](λ) = V2[ρD](λ) with-
out changing a classical state to a nonclassical one and
indeed without changing the value of V [ρ](λ). It follows
that

V [ρ](λ) = V2[ρD](λ) <
1

2
(1 + 9λ2) . (11)

That is, if a state is found to be nonlinearly squeezed, it
is also necessarily nonclassical.

Similarly, if a state is found to be nonclassical by the
bound Eq. (6) then it also contains nonlinear squeezing.
Suppose a state ρ has a variance such that a momentum
displacement to the second moment will display nonclas-
sicality. It follows that V [ρ](λ) = V2[ρD](λ) < 1

2 (1+9λ2)
and therefore the state is also nonlinearly squeezed. Non-
linear squeezing therefore shares this equivalence with
linear squeezed states [61, 62].

B. Direct Detection Method

Mechanical systems capable of being influenced by a
nonlinear potential are probed by an optical beam and
therefore any estimation of nonlinear squeezing is indirect
and influenced by this coupling and the associated optical
noise. To include a broad class of experimental realisa-
tions we consider optomechanical systems whose Hamil-
tonian dynamics is characterised by that of a standard
model [63] in which a mechanical oscillator is driven by an
external laser field of frequency ωL and the cavity dissi-
pates at a rate κ. This description also covers prospective
levitated optomechanical systems in cavities [42, 43, 64]
and in particular such setups allow us to enhance the gain
of the measurement through pulsed schemes with high-Q
cavities. Such systems are typically described, in units of
~ and after a suitable linearisation, with the Hamiltonian

H = ∆a†a+ Ωb†b+ g(a+ a†)(b+ b†) , (12)

where a and b are, respectively, the cavity and mechanical
annihilation operators, ∆ = ω−ωL is the detuning of the
cavity and ω is the cavity resonance frequency, Ω is the
mechanical frequency and g is the interaction strength
enhanced by the intensity of the laser field.

If one chooses to drive on resonance with the drive
amplitude modulated by the mechanical frequency or,
equivalently [63, 65], drive with two tones on the me-
chanical sidebands, one achieves a QND coupling of the
cavity position quadrature with an arbitrary mechanical

quadrature Qφ = be−iφ+b†eiφ√
2

[66]. Note that we will refer

to φ = 0, π2 as q and p respectively. The phase φ is deter-
mined by the phase of the external drive. In the frame
rotating with the free mechanical energy one may invoke
the rotating wave approximation to obtain the simple
expression

H = GXQφ , (13)
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FIG. 2. The quality of the reconstruction procedure for the
nonlinear squeezing (NLS) of the state |γ〉 [see Eq. (24)] as a
function of (a) the thermalisation rate n̄Γm, (b) the interac-
tion time τ and (c) the cooperativity C. The system parame-
ters are, in dimensionless units, in (a) G = 0.1κ and τκ = 103,
in (b) G = 0.1κ, n̄Γm = 10−5κ and in (c) n̄Γm = 10−4κ and
κτ = 103. The black dots trace the analytic NLS for |γ〉 [see
Eq (26)] with nonlinearity γ = 0.1. The dashed curve rep-
resents V [ρ](λ) for the ground state as well as the threshold
for nonclassicality. The shaded regions indicate the error in
the reconstruction for the varied parameter i.e. the upper
and lower bounds to a given shaded region show the error as
the standard deviation from the average reconstructed non-
linear squeezing curve. These statistical quantities are calcu-
lated from an ensemble of 20 reconstructions, each having 106

measurement results per reconstructed quadrature.

where G = 2g and X = a+a†√
2

is the amplitude quadra-

ture of the cavity. The necessary condition for the RWA
to hold is the resolved sideband condition κ � Ω. Our
choice of the QND coupling for the task of the quantum
state analysis is dictated particularly by the ability of the
former to perform well at moderate cavity escape efficien-
cies. Other more demanding options would include, for
example, swapping the mechanical state to optics with
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subsequent optical tomography, or detection of the me-
chanical characteristic function via coupling to an atom
(see Ref. [67] and references therein). The QND interac-
tion has been implemented in the domains of electrome-
chanics [17, 68, 69] and optomechanics [70].

Alternatively, to achieve this coupling, one may con-
sider a stroboscopic scheme on resonance in the bad cav-
ity limit [71, 72]. These theoretical results on QND cou-
plings are also available without the presence of a cavity
(e.g. in levitated optomechanical setups without cavities
[41, 44]) however outside a cavity the gain of the coupling
is low and this presents an efficiency that is too low to
accurately reconstruct the nonlinear squeezing. There-
fore our results are most relevant for the case in which
the optomechanical coupling occurs within a cavity.

However the system we are examining is not unitary
due to dissipation into the output signal and mechanical
decoherence of the oscillator. We may write the Langevin
equations [73] for the system using the input-output for-
malism,

ȧ =
−iGQφ√

2
− κ

2
a+
√
κain (14)

ḃ =
−iGeiφX√

2
− Γm

2
b+

√
Γmξ , (15)

where Γm is the mechanical damping, ain is the input
cavity field and the quantum Langevin force ξ describes
the mechanical decoherence. This thermal noise has the
following statistical properties:

〈ξ†(t)ξ(t′)〉 = n̄δ(t− t′) , (16)

〈ξ(t)ξ†(t′)〉 = (n̄+ 1) δ(t− t′) , (17)

where n̄ is the mean phonon occupation of the thermal
bath. To consider the output cavity mode described by
aout we make use of the input-output relation [74]

ain + aout =
√
κa . (18)

In studying the mechanical thermal noise we note that
the thermal states obey Gaussian statistics and so we
may write the higher even moments En in terms of the
second moment (since the first is zero). Define

Ek = 〈Ek〉 =

{
0 k odd(
n̄+ 1

2

) k
2 (k − 1)!! k even

(19)

The statistics of the evolved output cavity momentum

Yout(τ) =
i(a†out−aout)√

2
are given by (see Supplementary

Material for greater detail)

〈Yout(τ)n〉 =
∑

k1+k2+k3=n

(
n

k1, k2, k3

)
Vk1

×
(
−2G

√
2τ

κ
+G

√
2τ3

κ
Γm

)k2

〈Qk2

φ 〉

×
(
−2Gτ

√
2Γm
3κ

)k3

Ek3 . (20)

where τ is the interval over which the interaction takes
place,

Vk =

{
0 k odd

1√
π

Γ
(
k+1

2

)
k even

(21)

and Γ is the Gamma function.
From Eq. (20) it is clear that we can retrieve the nec-

essary moments for mechanical q and p in order to con-
struct V [ρ](λ) and V2[ρ](λ). To clarify further, fixing a
particular quadrature for reconstruction fixes a phase φ
of the laser drive. By adjusting φ (and therefore Qφ)
information about different quadratures can be copied
into the momentum quadrature of the output field. How-
ever the mixed moments 〈pq2〉 and 〈q2p〉 are not directly
available. Fortunately, we do not need full state tomog-
raphy to specify them. Instead, these may be obtained
by considering the rotated mechanical quadratures Qπ

4

and Q−π4 , obtained by selecting appropriate phases of
the external drive. Then,

pq2 =

√
2

3
(Q3

π
4
−Q3

−π4
)− p3

3
− iq . (22)

Similarly,

q2p =

√
2

3
(Q3

π
4
−Q3

−π4
)− p3

3
+ iq , (23)

by taking advantage of commutation relations. In sum-
mary, to construct the nonlinear squeezing function, we
require moments of qn with n = 1, 2, 4, pn with n = 1, 2, 3
and Q3

±π4
. That said, due to the hierarchical nature of

Eq. (20) we must also reconstruct the first order moments
of the rotated quadratures in order to retrieve the third
order moments.

Typically the parameters of an optomechanics setup,
particularly those considered here such as the cavity de-
cay and mechanical decoherence rates, and the optome-
chanical coupling strength, are well-characterised and
stable [75–77]. Given that this is so, we are in a position
to evaluate the quality of a reconstruction based on the
information retrievable using these relations. Consider
having access to many copies of a given quantum state.
By engineering the QND interaction with an appropriate
Qφ one may sample from Yout(τ) by performing homo-
dyne detection on the output cavity field after an interac-
tion time τ . This generates a histogram from which one
may estimate the various moments of Yout(τ). Inverting
the equations generated by Eq. (20) produces the mo-
ments of the chosen mechanical quadrature Qφ [78, 79].
Given the correct assortment of reconstructed statistics
one may construct the functions V [ρ](λ) and V2[ρ](λ) for
the mechanical state without the necessity of performing
full tomography of the mechanical state.

C. Nonlinear Squeezing

Nonlinear squeezing can be generated by a nonlinear
potential V (q) = γq3 temporarily influencing the me-
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chanical oscillator while in the ground state, as depicted
in Fig. 1. If this application is sufficiently fast and with
a strong enough nonlinearity, we can expect an approxi-
mate cubic phase state of the mechanical oscillator:

|γ〉 = eiγq
3 |0〉 (24)

where |0〉 is the ground state. The design of such pure
states in optomechanics has been approached in the lit-
erature already [52]. Fig. 2 demonstrates the quality of
the reconstruction under certain relevant experimental
conditions (see figure caption). The figure demonstrates
that the reconstruction is quite robust to mechanical de-
coherence over a wide range of parameters, mainly due
to a short interaction time τ and mechanical decoher-
ence characterised by rethermalisation rates n̄Γm < 1

τ .
Indeed, within the acceptable parameter ranges specified
the reconstruction shows little bias with respect to over-
or underestimating the nonlinear squeezing and low er-
ror due to statistical fluctuations in the reconstruction.
The dashed line shows the fluctuations of pNLQ for the
ground state which also functions as a bound for nonclas-
sicality and the dotted curve shows the ideal nonlinear
squeezing for |γ〉 with γ = 0.1, a conservative value. The
reconstruction quality experiences a sharp decrease in ac-
curacy after passing certain thresholds in the parameters
directly related to mechanical decoherence and the qual-
ity of the cavity-mechanical coupling.

We divide the parameters into two major classes:
rethermalisation, involving n̄, Γm and τ , and coopera-
tivity, mainly involving G and κ. Panels (a) and (b) in-
dicate the effects of surpassing the rethermalisation time
Γmn̄τ � 1. Once this threshold is crossed errors ac-
cumulate and the variance in the reconstruction of the
nonlinear squeezing curve becomes very large. This can
be understood taking the view that information about
the mechanical state must be extracted faster than the
rethermalisation time. Additionally in panel (c) we take
a limiting case of the rethermalisation time and investi-
gate the effect of changing the ratio between the coupling
strength and the cavity dissipation rate in terms of the
cooperativity

C =
G2

n̄Γmκ
. (25)

The results show that the quality of the reconstruction is
maintained for cooperativity values of C & 0.1. Advan-
tageously, a cooperativity of C > 1 is not required. The
QND interaction required for the reconstruction is al-
ready available in electromechanics setups [17, 18], where
dissipative engineering may soon be capable of providing
nonlinear states. Furthermore, experiments in levitated
optomechanics are beginning to comfortably reach this
regime [80–82] and have also demonstrated the capacity
for applying nonlinear external potentials to a mechani-
cal oscillator [54].

It is important that the reconstruction is accurate as
any assessment of the quality of the resource derived

from the reconstruction will be benchmarked against the
ground state. The errors in the reconstruction must not
be so wide that the error curves (one standard deviation)
everywhere cross the nonclassicality benchmark so that
the resource cannot be distinguished from classical re-
sources. Our results indicate favourably that the largest
error in the reconstruction occurs for values of λ > 0.1 for
which the nonlinear squeezing is far from the threshold
set by the ground state. Additionally, one must take care
to have minimal error in order to prevent an overestima-
tion of the quality of the resource. For example, once
the relevant thresholds are surpassed it is possible, in the
worst case, to greatly overestimate the value of the non-
linear squeezing. In this case it may be reasonable to use
the upper limits as conservative estimates. On the other
hand, even a weak nonlinearity is sufficient to surpass
the ground state limit and since the ground state also
represents the bound for nonclassicality any nonlinearly
squeezed state is inherently nonclassical.

To illustrate the effectiveness of searching for nonlinear
squeezing we again assume the approximate cubic phase
state |γ〉 and show how it provides an advantage over the
vacuum state for a range of values of γ. The nonlinear
squeezing for this state is

V [|γ〉 〈γ|](λ) =
1

2
(1 + 9(γ − λ)2) . (26)

Recall that in order for |γ〉 to constitute a resource for

applying the gate eiγGq
3

the state must satisfy the con-
dition V [ρ](γG) < V [|0〉 〈0|](γG). Assuming γ > 0 it is
clear that this occurs whenever γ < 2γG.

Naturally, the approximate cubic phase state is most
effective as a resource whenever γ = γG. However, exact
matching of the nonlinearity of the cubic resource state
and that of the cubic phase gate is not necessary in order
to gain an advantage on classical states. As said, in prac-
tice one may not know in advance what state has been
prepared. We stress that the method of reconstructing
the nonlinear squeezing provides an opportunity to ex-
tract the quality of the resource via measurements on a
few quadratures of light, requiring significantly less effort
than full tomography.

III. DISCUSSION

The main result of this article is the provision of a
method for reconstruction of the fluctuations in a non-
linear combination of quadratures of a mechanical mode
in optomechanics without complete homodyne tomogra-
phy. In particular we focus on the nonlinear quadrature
generated in momentum by a cubic potential, relevant for
noise reduction in nonlinear circuits employing the cele-
brated cubic phase gate. We provide an analysis of the
robustness of this reconstruction method in the context
of the cooperativity and mechanical decoherence. This
is important for nonlinear states displaying reduced fluc-
tuations in such a quadrature as the properties emerging
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from the nonlinearity are susceptible to being wiped out
by the Gaussian noise of a thermal bath. States which
exhibit nonlinear squeezing in this regard are also shown
to exhibit P -function nonclassicality similar to Gaussian
squeezed states from linearised dynamics. To the advan-
tage of state of the art experiments, even weak nonlin-
earities display significant nonlinear squeezing compared
to the ground state. It is straightforward to extend this
methodology to higher orders of nonlinear potentials to
detect the aspects relevant for the construction of non-
linear phase gates [83].

The setting presented here is very general for opto-
and electromechanics but we would like to emphasise
the applicability of our scheme to levitated systems [80–
82], given the large range of decoherence parameters over
which the scheme is viable. As mentioned, levitated sys-
tems are able to employ nonlinear potentials for the dy-
namics of the levitated particle [54], thus enabling the
preparation of nonlinear states, and have already ap-
proached the regimes in which the rethermalisation time
threshold can be met. The major challenge for the future
is to achieve QND couplings with the levitated system
and incorporate nonlinear state preparation into a single
setup.
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S1

Supplementary material: Estimation of squeezing in a nonlinear quadrature of a
mechanical oscillator

S1. INPUT-OUTPUT THEORY

Here we give a fuller account of the derivation of Eq. (20) in the main text through the apparatus of input-output
theory. This also includes the assumptions and approximations we have made on the system dynamics. The system
we are examining is not unitary due to dissipation on the cavity field and mechanical decoherence on the resonator.
We may write the Langevin equations for the system using the input-output formalism,

ȧ =
−iGQφ√

2
− κ

2
a+
√
κain (S1)

ḃ =
−iGeiφX√

2
− Γm

2
b+

√
Γmξ , (S2)

where Γm is the mechanical damping, ain is the input cavity field and ξ describes the mechanical decoherence.
Constructing the quadratures from these equations,

Ẋ = −κ2X +
√
κXin (S3)

Ẏ = −
√

2GQφ − κ
2Y +

√
κYin (S4)

Q̇φ = −Γm
2 Qφ +

√
Γm
2 (ξe−iφ + ξ†eiφ) , (S5)

one may require that κ is the dominant frequency, which allows the cavity field to adiabatically follow the dynamics.
In this case the cavity momentum is simply expressed as

Y = 2
κ (
√
κYin −

√
2GQφ) . (S6)

To consider the output cavity momentum we make use of the input-output relation

ain + aout =
√
κa . (S7)

Then,

Yout(t) = Yin(t)− 2G
√

2
κQφ(t) . (S8)

If mechanical decoherence is neglected, Qφ(t) ≡ Q0
φ. The homodyne detector measures a certain temporal mode of

the leaking field defined by

Yout(τ) =

∫ τ

0

Yout(t)fout(t)dt ⇒ Yout = Yin(τ)− 2G
√

2
κQ

0
φ

∫ τ

0

fout(t)dt . (S9)

If fout = 1√
τ

then we simply have that

Yout(τ) = Yin(τ)− 2G
√

2τ
κ Q

0
φ . (S10)

Then it follows that the statistics of the output momentum are represented by

〈Yout(τ)n〉 =
∑
k

(
n

k

)
Vk
(
−2G

√
2τ
κ

)n−k
〈Qn−kφ 〉 . (S11)

At time τ the interaction is held to have been switched off hence the input field is in the vacuum and has statistics
represented by V. It is clear that the process of inverting this hierarchy of equations depends on the interplay between
the set of parameters {G, τ, κ}.

What remains is to develop the effect of thermal decoherence on the reconstruction procedure. The thermal noise
ξ introduced above has the following statistical properties:

〈ξ†(t)ξ(t′)〉 = n̄δ(t− t′) , 〈ξ(t)ξ†(t′)〉 = (n̄+ 1) δ(t− t′) , (S12)



S2

where n̄ is the average occupation of the bath. In this case we must examine Eq. (S5) in the context of nonzero Γm.
The formal solution to this equation has the form

Qφ(t) = Qφ(0)e−
Γmt

2 +
√

Γme
−Γmt

2

∫ t

0

ξφ(s)e
Γms

2 ds , (S13)

where ξφ = ξe−iφ+ξ†eiφ√
2

. Applying the rectangular mode filter fout = 1√
τ

to this equation results in

Qφ(τ) =
2Qφ(0)

Γm
√
τ

(1− e−Γmτ
2 )− 2

√
τΓm − 3 + 4e−

Γmτ
2 − eΓmτ

Γ2
mτ

Eφ . (S14)

Note that Eφ is a proper quadrature of the field (obeying canonical commutation relations) defined by

Eφ =

∫ τ
0
ξφ(e

Γm
2 (s−τ) − 1)ds√∫ τ

0
(e

Γm
2 (s−τ) − 1)2ds

=

√
τΓm − 3 + 4e−

Γmτ
2 − eΓmτ

Γm

∫ τ

0

ξφ(e
Γm
2 (s−τ) − 1)ds .

Finally, the relation between the output cavity mode and the mechanical quadratures is given by

Yout(τ) = Yin(τ)− 4GQφ(0)

Γm

√
2

κτ
(1− e−Γmτ

2 )− 4G

√
2(Γmτ + 4e−

Γmτ
2 − eΓmτ − 3)

κτΓ2
m

Eφ . (S15)

In the limit Γm → 0 this expression recovers what has already been derived. Following from this, the statistics of the
output field are related to the mechanical quadrature moments via

〈Yout(τ)n〉 =
∑

k1+k2+k3=n

(
n

k1, k2, k3

)
Vk1

(
− 4G

Γm

√
2

κτ
(1− e−Γmτ

2 )

)k2

〈Qφ(0)k2〉

×

−4G

√
2(Γmτ + 4e−

Γmτ
2 − e−Γmτ − 3)

κτΓ2
m

k3

〈Ek3

φ 〉 . (S16)

It is straightforward to show that Eφ obeys Gaussian statistics over the thermal state and furthermore is symmetric
under rotations in phase space i.e. we may omit the angle φ. The higher even moments of E are given in terms of the
second moment (since the first is zero). Define

En = 〈En〉 =

{
0 n odd(
n̄+ 1

2

)n
2 (n− 1)!! n even.

(S17)

A further simplification can be readily achieved by expanding the coefficients to first order in Γm. The result is
Eq. (20) in the main text.

S2. ERROR CURVES

In this section we give a short description of how we arrive at the error curves of Fig. 2 from the main text. The
reconstruction procedure involves generating histograms of Yout for various phases φ of the driving laser. In our
simulations we take 106 measurements of Yout in order to have a good sampling from the probability distributions.
The statistical moments generated from these histograms are used to estimate the statistical moments of various
mechanical quadratures, a particular assortment of which represents the nonlinear squeezing.

For each fixed set of parameters entering the optomechanical dynamics we produce 20 such reconstructions of the
nonlinear squeezing. This produces a collection of parabolic curves with which we may straightforwardly produce an
average reconstruction by taking the sum of the collection and dividing by 20.

Consider again Fig. 2. The average reconstructed nonlinear squeezing curve is the midline of each shaded region.
The outer curves then represent one standard deviation of the collection of reconstructions away from the average.
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