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Atom-Mechanical Hong-Ou-Mandel Interference

A. D. Manukhova, A. A. Rakhubovsky, and R. Filip
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Quantum coupling between mechanical oscillators and atomic gases generating en-
tanglement has been recently experimentally demonstrated using their subsequent in-
teraction with light. The next step is to build a hybrid atom-mechanical quantum gate
showing bosonic interference effects of single quanta in the atoms and oscillators. We
propose an experimental test of Hong-Ou-Mandel interference between single phononic
excitation and single collective excitation of atoms using the optical connection between
them. A single optical pulse is sufficient to build a hybrid quantum-nondemolition gate
to observe the bunching of such different quanta. The output atomic-mechanical state
exhibits a probability of a hybrid bunching effect that proves its nonclassical aspects.
This proposal opens a feasible road to broadly test such advanced quantum bunching
phenomena in a hybrid system with different specific couplings.

1 Introduction

Hybridization of matter quantum platforms using light as an intermediary is currently growing in
directions in quantum technology. The aim of this development is to understand the compatibility
of different experimental platforms and combine the advantages and capabilities of different parts
into one hybrid system. A pioneering road connects atomic ensembles with mechanical oscillators
of optomechanical cavities [1]. The outstanding degree of quantum control over atoms makes
them an excellent platform for quantum information [2-9], quantum memory [10], and quantum
simulations [11]. Mechanical oscillators, having huge quality factors [12-16], appear suitable for
quantum sensing [17-20] and fundamental physics tests [21-23]. Importantly, mechanical systems
offer an access to quantum nonlinearities in continuous-variable regime [16, 24, 25] not easily
accessible in atomic systems. Recently, coupling between mechanical oscillators and atoms reached
a new phase of experimental development.

The most recent experiments show that a spin mode of the warm atomic ensemble can interact
with a mechanical mode of a distant optomechanical cavity using light as a mediator. In [26], the
authors reported Einstein-Podolsky-Rosen-type (EPR) correlations in a hybrid system consisting
of a mechanical oscillator and a spin oscillator. A vibrational mode of a highly stressed dielectric
membrane, which was embedded in a free-space optical cavity, constituted the mechanical oscillator.
The spin oscillator had been prepared in a warm ensemble of optically pumped atoms confined in
a spin-preserving microcell. The two oscillators were coupled to an itinerant light in a cascaded
fashion, that is the light interacted with the mechanics between its two interactions with atoms.
The authors have shown 5.5 dB of two-mode squeezing of thermal fluctuations in both oscillators
which is an important step towards quantum EPR-type entanglement.

In [27], the authors realized a similar long-distance interaction using a laser beam in a loop
geometry. Free-space laser beam coupled a collective atomic spin and a micromechanical mem-
brane, both in room-temperature environment. Through the loop the systems could exchange
light photons, realizing a bidirectional interaction. The loop led to an interference of quantum
noise introduced by the light field — for any system that couples to the light twice and with
opposite phase, quantum noise interferes destructively and associated decoherence is suppressed.
The versatility of light-mediated interactions is demonstrated this way. The authors engineered
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a beam-splitter and a parametric-gain coupling between atoms and mechanics and could switch
from these couplings to a dissipative one by applying a phase shift to the light field between the
systems. In both works, the distance between atomic ensemble and mechanics was of the order
of one meter. Thus, the basic possibility to couple atomic ensemble with a mechanical mode is
conclusively proven.

The next step is to turn the hybrid entangling coupling to the pulsed hybrid gate and test its
performance. Pulsed operation brings a number of advantages, including working with modern
tools of quantum optics [28] and, compared to a continuous-wave driving, a possibility to get rid of
thermal decoherence by operating on shorter timescales. For the applications, it is advantageous
to build a hybrid quantum nondemolition gate that allows to use geometric phase effects [29, 30].
Quantum nondemolition gate is basic continuous-variable gate capable to build not only all up-to-
quadratic nonlinearities [31] but also higher-order nonlinearities [32]. Such hybrid gates need to
be tested at the level of single quanta before they will be used. They can materialize new hybrid
bunching between phononic and atomic excitations. A phonon of mechanical oscillations can
change its nature and add to an atomic excitation, and simultaneously, an atomic excitation can
be transferred and increase the number of phonons. These two effects can superpose as it happens
in the optical Hong-Ou-Mandel experiment for a pair of photons interfering at a balanced beam-
splitter [33, 34]. Hong-Ou-Mandel interference effect rises despite the phase insensitive nature
of single photons. The ideal bunching superposes the photon pairs at one or either output with
a probability that will never appear for classical phase-insensitive states [35]. This proves that
bunching for nonclassical states goes beyond the interference effects known for classical continuous
waves and emphasizes truly quantum nature of excitations.

At the moment, numerous proposals are put forward to test the Hong-Ou-Mandel effect with
different platforms besides optical photons. Some of these are already implemented experimentally.
It is worth mentioning such bosonic platforms as surface plasmon polaritons, i.e. the quanta of
the surface plasma waves [36, 37]; phonons, the quantized excitation of mechanical motion [38, 39];
collective atomic excitations, where the HOM effect is obtained using the Rydberg blockade [40].
Massive particles such as atoms also are able to provide two-particle interferences [41-44]. Besides,
the HOM effect has been proposed using quantum memory cell instead of a beam-splitter [45].
Finally, not only bosons but also fermions, namely, electrons can interfere in an HOM-like arrange-
ment [46], and the anti-HOM effect by interfering bosonic and fermionic wavefunctions of entangled
photons has been recently experimentally demonstrated [47].

This paper proposes a feasible atom-mechanical Hong-Ou-Mandel experiment capable of prov-
ing such a nonclassical interference regime for the hybrid quantum nondemolition gate. This hybrid
gate uses a single pulse of squeezed light interacting sequentially with atoms and mechanical os-
cillator. The pulse is subsequently measured by homodyne detection whose output controls the
atomic state. First, we analyze nonclassical atom-optical and optomechanical Hong-Ou-Mandel
effects separately. We propose experiments to demonstrate them on current experimental plat-
forms. Finally, we present their combination in the atom-mechanical gate and derive conditions
for a successful demonstration of nonclassical atom-phonon bunching. An experimental test of our
proposal will prove the new level of quantum control for hybrid systems and stimulate proposals
and verifications of hybrid bunching between other bosonic platforms.

2 Results

In this article, we demonstrate the possibility to observe an analogue of the Hong-Ou-Mandel (HOM)
interference using a quantum nondemolition (QND) gate between a cloud of atoms and a mechani-
cal mode of an optomechanical cavity. The schematic diagram of the setup that allows realization
of the gate is shown in the Fig. 1 and is considered in detail in [48]. Note that such an atomic-
mechanical system consists of two parts, which in turn perform QND gates coupling the mediating
optical mode to the atomic or to the mechanical mode. We will show that each of the three gates
(atom-optical, optomechanical, and atom-mechanical) is capable of providing the HOM effect given
feasible experimental parameters.

For its operation and observation of the HOM interference, the gate requires the physical
parameters (including the coupling rates and cavities linewidths) that are within reach from the
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Figure 1: HOM effect via QND gate between an atomic ensemble and a mechanical oscillator excited by single
quanta |1)a and |[1)u. A quantum light pulse with a rectangular temporal profile sequentially passes the atomic
ensemble in a cavity and then the optomechanical cavity and then goes to the homodyne detector (HD). Routing
of the pulse is enabled by the circulators Cq 2. Within the cavities the optical pulse is coupled to atoms and
mechanics respectively via QND interactions enabled by strong classical optical pumps. The homodyne detection
data are used to control the optical feedforward procedure after the detection to shift the atomic quadratures.
The homodyne measurement and magnetic feedforward control via magnetic field phase shifter are optimized to
perform the atom-mechanical QND interaction and the squeezed light is used to achieve large entangling power.

ones used in [26, 27]. In both these works, the atoms are in free space, however, the presence of
an atomic cavity is not essential for our treatment. Very same results can be obtained with atoms
in free space, and we assume a presence of the cavity for atoms for the convenience of single-mode
description. Two specifics are critical for the observation of HOM effect in the hybrid system [48].
First, both interactions are of QND type (in [27], another type of interaction was implemented
for the optomechanical part). Another important requirement is cooling and isolation of the
mechanical mode from its thermal environment since the thermal noises can totally destroy the
HOM interference. In [26], mechanics is at the room temperature, however cooling of a membrane
oscillator [49-51] and operation at low temperatures, in particular, in cryogenic environment [52,
53] has been reported previously.

We consider the HOM effect as a bunching of two excitations, initially in two different interact-
ing subsystems, in one of them. Our aim is to demonstrate the nonclassical HOM effect, i.e. the
buildup of the bunched state via the second-order interference not achievable by phase-randomized
classical waves after the same interaction. As in optical HOM effect at the beam-splitter, we as-
sume incoherent mixture of ground (vacuum) and single-boson states at the input of the QND gate,
investigate the dependences of the HOM matrix element of the bunched state on the parameters of
the gate and compare it to the HOM element corresponding to the classical phase-random coherent
cases. For such classical state any bunching can be only obtained via first order phase-sensitive cor-
relation between the amplitudes. To eliminate this phase effect we therefore use phase randomized
coherent states to determine the classical thresholds.

2.1 Atom-Light Hong-Ou-Mandel Interference

We first examine a system comprising a pulse of traveling light and an atomic ensemble for the
capability to demonstrate a HOM effect via a QND coupling. This coupling can be naturally




observed in such systems as has been reported in [54, 55]. We briefly reiterate the strategy to
achieve a QND coupling in the system and then derive the input-output relations using which we
evaluate the output statistics of light and atoms.

The basic principle to realize the QND gate between an atomic ensemble and light is the
following [56]. A pulse of quantum signal field, accompanied by the classical driving, passes through
the atomic ensemble, located in the cavity with optical decay rate x,. Both fields are the pulses
with rectangular time profiles, of duration 7. To describe the atomic subsystem we consider the
state of an ensemble of atoms at room temperature, each having two stable ground states. We
assume a strong magnetic driving along the Z-axis for the atomic ensemble that allows us to apply
the Holstein-Primakoff transformation and consider normalized collective spins (X WP A) as very

long-lived canonical atomic variables ([X WP A} = 2i). The phase of the driving is chosen in a

way that the effective Hamiltonian for the atom-light interaction is H., = thXA]ﬁC, where g, is
the coupling strength and p. is the canonical phase quadrature of the intracavity light. Then the
signal leaves the atomic cavity and at the output can be derived using the input-output relations.
At this stage we also take into account the loss that occurs during the coupling process.

After the interaction, the initial quadratures (X9, P2, X% P%)7 transform to the final quadra-
tures (Xout, Pout Xout pout)T ag follows:

X = X0 + Ny, X = T.X) + GX + N, (1)
f’iut = 132 - GAf)g + NPA7 Pout = TLf)g + 1QPL’ (2)

where (Xg, f’g) are the canonical quadratures of the signal light pulse. Transfer factor T, and
the excess noises N, are complex functions of the physical parameters of the system — the gate
efficiency 7, the coupling constant g,, the pulse duration 7, and the decay rate of the atomic
cavity k,. The interaction gains G, and G, characterize the coupling strength between the atomic
oscillator and the light:
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It should be noted that the pre-factors of the admixed quadratures, Xg and f’g in Egs. (1,2), are
unequal (G, # G). Therefore, such a transformation is, in general, not symmetrical. It is only in
the limit of a perfect efficiency 17 = 1 and sufficiently long pulses k,7 > 1 that we can characterise
the gate with only a single gain parameter G. For a fixed 7k, this parameter is determined mostly
by the coupling strength g,.

Let us examine this non-ideal QND gate and calculate the probability of detecting two exci-
tations at one output of the gate and zero at the other (the success probability). Such success
appears already in a short-time evolution of ideal QND gate applied on two quanta. This probabil-
ity equals the HOM matrix element (HOM|pous[HOM), where [HOM) = (|2), [0), — |0), |2),) /V/2.
The choice of such a definition of the HOM-state is worth explaining. Our goal is to com-
pare the HOM interference obtained via the QND gate with the well known HOM effect ob-
tained via the beam-splitter. For a beam-splitter, this HOM state definition provides the maxi-
mum of the (HOM|pous|HOM). Another definition, taken with a different sign, i.e. |[HOM.) =
(12), 10), +10), 2),) /2, would lead to the zero HOM matrix element of the output state. Same
proved to be true for the QND transformation, and therefore, such an approach allows us to
compare the HOM effect by the beam-splitter and the QND gate in the most appropriate way.

To evaluate the bunching of the output excitations and to determine whether it is caused by a
truly non-classical interference of bosons, we define certain thresholds that correspond to the perfor-
mance of classical coherent states after the same QND interaction. We define the output threshold
as the value of this element for two arbitrary coherent states at the output of the gates. Such
interaction-independent threshold shows the maximal value of HOM element attainable by any bi-
partite state with positive Glauber-Sudarshan P-function and as such is a fundamental boundary
of nonclassicality of the output state of the gate (for details, see Methods and Supplementary). In
addition, we define the input threshold, as the highest possible value of the HOM element after the
same interaction for the case when both input modes were initially in phase-randomized coherent
states, as a lower interaction-dependent nonclassicality threshold. Phase randomization allows to




rule out the first-order interference from input coherent states and the threshold, thereby, shows
the bunching achievable by classical states only due to the higher-order interference. We assume
that the HOM interference with nonclassical input states takes place if the corresponding input
threshold is surpassed.

Figure 2(a) demonstrates the dependence of the HOM element at the output of the QND gate
on its coupling strength. We consider a realistic incoherent mixture of vacuum and single-boson
states at each input port of the gate, assuming parameter p as the fraction of the latter in the
mixture, that is, the state p = pa ® pr, with p; = p|1)(1|, + (1 — p) |0)(0|, for i = A,L (see Sec. 3
for details). For simplicity, we assume equal contribution of excitations (that is, equal p) in each
subsystem. For p = 1 both atomic and light modes are initially in a pure single-boson state |1),|1)..
Single boson (polariton) states are already achievable in the experiments for the different atomic
systems [57-59].
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Figure 2: Matrix element (HOM|pou:|HOM) of the output states of the light-atom and optomechanical gates. The
element is plotted as a function of the coupling strength for the pulse duration 7kam = 100 and efficiency = 0.9.
At the input we consider the mixture (p |1)(1] + (1 — p) [0){0])am ® (p |1)(1] + (1 — p) |0){0|).: a) Light-atom
QND gate. Dependence on the coupling strength ga for p = 1, 0.78, 0.55. A well pronounced maximum
decreases with decreasing p. The inset demonstrates the HOM element as the function of the pulse duration
Tka. b) Optomechanical QND gate. Dependence on the coupling strength gu for p = 1, 0.78, 0.55 using two
values of the rethermalization rate each provides its own input threshold (thick for I'y = 10"*km and thin for
I'w = 1073k ). For both (a) and (b), the dashed gray line is the output threshold and the blue curves of the
corresponding thickness are the input thresholds (phase randomized).

For a fixed pulse duration and efficiency, the HOM element, as a function of the coupling
strength, has a well pronounced maximum that decreases with decreasing p. For 7k, = 100 and
n = 0.9 (i.e. parameters providing the gate performance close to the best possible) the maximum
of the HOM element located at g, = 0.06k, decreases from 0.25 at p = 1 to 1/e? at p ~ 0.78,
which corresponds to the output threshold. At p = 0.55 the HOM element already crosses the
input threshold. Note that the input threshold is determined only by the parameters of the gate,
S0 p, as the parameter of the input state, does not affect it. This threshold, shown by blue, is the
same for the entire set of p.

For the input states with high p (p > 0.8), the HOM element surpasses the corresponding
input threshold even for a very low efficiency n = 0.1. Thus the Hong-Ou-Mandel interference can
be observed for a gate of a low quality if the input state was close to the pure one-boson state.
Moreover, for the high p the HOM element satisfies a more stringent condition and lies above even
the output threshold for a wide range of efficiencies (up to n > 0.2) if the pulse duration and
coupling strength are optimized. However, for the low p, the HOM element cannot surpass the
input threshold even in the case of an ideal gate with 7 = 1 and both optimal 7 and g, .

The pulse duration, as an argument of the interaction gains G, ., also deserves attention. The
dependence of the HOM element on 7 for different p accompanied with their common input thresh-
old are shown on the inset of the Fig. 2(a). These curves also have pronounced maxima, that is,
there is an optimal pulse duration for each fixed coupling.

For this type of the gate, the longer the pulse, the higher the HOM element we can get and the
smaller coupling is required, however for 7x, > 100 the advantage is already insignificant.




For any QND gate, the parity of the total number of excitations is preserved, and hence an odd
number of excitations at the input will never turn into an even number at the output. Thus, if
p = 0 for one subsystem and p = 1 for the other (for the light-atom gate it corresponds to |0),]1)y,
or |1)4]0)., inputs), it will lead to the zero HOM element of the output state, i.e. no HOM effect.
In case of p = 0 for both subsystems, the input state is a pure vacuum state and the total number
of excitations is even. The HOM element of the output state is non-zero, but has a maximum
that is lower but still well pronounced, so the bunching of excitations that are created during the
interaction is present.

2.2 Optomechanical Hong-Ou-Mandel Interference

It is also possible to show the effect of bunching of optical photons and mechanical phonons
in an optomechanical system. Optomechanical QND gate between an incident light pulse and
the mechanical oscillator can be realized using e.g. appropriately modulated classical drive [60,
61]. To describe the mechanical part of the system we use quadratures (XM,YM) that refer to
the dimensionless position and momentum of the mechanical oscillator. In optomechanics, single
phonons can be generated by optomechanical parametric down-conversion [62] or swapped to the
mechanical mode from light [63, 64].

Let us consider coupling of the same pair of quadratures and use the following effective linearized
Hamiltonian for the optomechanical interaction ﬁLM = thXMﬁC [65], where P, is the canonical
quadrature of the intracavity light. After the QND type interaction with the coupling strength gy,
the quadratures of light and mechanics transform as:

XM = Xg{ + NXM’ X/out = TLXE + Glxg/{ + NXL’ (4)
Y=Y} -G, Y’ +Np,, YU =T, Y] +Np,, (5)

where canonical quadratures (XO,Y’O) of the signal and the transfer factors T; are defined as in
the previous subsection, while the noises N,, and their correlation relations (characterized by
the physical parameters of the system) are different. Their exact definitions are cumbersome
and thus are in the Supplementary Materials. Along with the cavity linewidth k), and coupling
rate gy, other important parameters of the optomechanical gate are the gate efficiency n and the
mechanical damping coefficient v,, that shows how good the mechanics is isolated from thermal
bath with average phonon number ny, (the two latter parameters are combined in the reheating
rate I'y; = yunin). Interaction gains Gy, coincide with the corresponding gains in the Eq. 3 with
an evident subscript replacement A — M. Thus, as in the previous, atom-light case, this gate is
asymmetric, i.e. Gy, # G, and the main role of the gain is similarly determined by the coupling
strength gy.

Despite very different physical nature, both atom-light and optomechanical gates are described
by very similar equations with the only apparent difference of the mechanical oscillator being
coupled to the environment with possibly very high occupation. This makes the rethermalization
of the mechanics the critical difference between the two gates. Qualitatively, the behavior of the
HOM element with respect to the efficiency and coupling strength is similar to the atom-light case,
so we will focus on the rethermalization rate.

Expectedly, the rethermalization rate I'y is the most significant physical parameter, severely
limiting the value of attainable (HOM|pout|HOM): the lower the rethermalization rate, the higher
the HOM element. Figure 2(b) shows the dependence of the HOM element and the corresponding
thresholds on the coupling strength for the two rethermalization rates.

The rethermalization strongly affects the values of the HOM elements, but very slightly affects
the input threshold. To demonstrate it we chose I'yy, = 1073k,,, that is quite feasible (see, e.g.,
Refs [12-14]), and compared the result with T'y; = 10~%k,, that is attainable at the moment in the
experiment. The HOM curves differ a lot, but not the thresholds. For the smaller values of I'y; the
plots look very similar to the case in the previous section where there is no rethermalization. That
is, 'y = 107k, is a type of a border and lower rethermalization does not significantly increase
the maximum of the HOM element.

Note that, in contrast to the atom-light case, the pulse duration has an optimal value yielding
the highest possible value of the HOM element, e.g. for the low rethermalization rate and high




efficiency, gy ~ 0.06xy, for 7y = 100 are the optimal parameters to observe the Hong-Ou-Mandel
interference. The existence of this optimal pulse length is dictated by the non-negligible reheating
rate that admixes to the mechanics thermal noise with variance increasing with the pulse duration.

2.3 Atom-Mechanical Hong-Ou-Mandel Interference

In this subsection, following our treatment in [48] we consider a hybrid QND gate between an
atomic ensemble and a mechanical oscillator considered in a previous subsections. Specifically, we
investigate bunching of excitations in such system.

To establish the gate we connect the atomic and optomechanical cavities introduced in Sec. 2.1
and 2.2 in such a way that the light passes them sequentially, interacting first with atoms and then
with mechanics. At the moment, such systems have already been physically implemented. For
example, the works [27] and [26] both describe the systems that theoretically allow observing the
HOM effect if the parameters are properly coordinated. In both works, the atoms are located in
free space, which, however, does not affect the idea, since it is important to ensure the interaction
of the QND type that could be done both ways, with or without the atomic cavity. In addition, we
emphasize that to observe the effect, it is critical to ensure a low rethermalization rate, therefore,
the optomechanical cavity should be appropriately cooled.

We choose the phases of the drivings in a way that the effective Hamiltonians for the atom-light
and mechanical- hght interactions are HLA = —th AZc and HLM = hguXyPe, correspondingly.
Afterward the X quadrature of the pulse is homodyned and the output of the detection is used
to displace the atoms in the phase space. The choice of different types of Hamiltonians for the
atomic-light and optomechanical parts of the scheme is dictated by the goal to couple the P,-
quadrature of the atomic part with the X-quadrature of the mechanics, that is, to provide an
effective Hamiltonian H « X, P,. For the hybrid atom-mechanical gate, we also consider squeezing
of the mediating light as a resource since for a QND coupling matter with light, squeezing can
effectively enhance the interaction gain [66, 67] which, in the gate, might enhance the HOM
effect. Strictly speaking, the squeezing could be beneficial also for the gates considered earlier, but
for those cases the advantage is small, while for an atom-mechanical gate it is more noticeable.
Additionally, squeezing the input state for a HOM-like interferometry would cause an unwanted
emphasis shift to the input state preparation which does not translate to the atom-mechanical case
where squeezing of input state is dramatically more challenging. Let us emphasize once again the
important difference of this gate from those considered earlier — here, the light is only a mediator
coupling two systems, it does not serve as a signal as it was for the atom-light and optomechanical
ones.

The built QND gate relates the quantum state of the atoms and mechanics after the in-
teractions with their initial states and the noises and transforms the initial quadratures ri® =
(X9, P9, X0 PY)T to the final quadratures ro" = r = (x4, pa, Tng, pu) T as:

z, =X =%, X% - 6,X% + Ny, , oy = X0 =%, X% + Nx,,, (6)
pa =P =%, PO 4 Np | pu =P =T, P + 6, P+ Np,,  (7)

where the controllable gains &, \, the transfer factors ¥, \, and the excess noises N, are compli-
cated functions of the interaction, loss and noise parameters of the system (see Supplementary
for the full definitions). For the atom-mechanical gate it is experimentally well justified to put
T, = Ty = 1. The system has several parameters affecting the process: the pulse duration 7, the
coupling strengths g, and gy, the initial squeezing of the mediator pulse S, the energy loss 7, the
optical damping rates x, and k,, of the cavities (for simplicity here we take Kk, = Ky = K, but
the difference can, in principle, serve as an additional degree of freedom), and the rethermalization
rate I'y;. The feedforward procedure is carried out in a way that ensures &, = &, i.e. this gate
is symmetric unlike the atom-light and mechanical-light cases:

2T 2
® = gMgAﬂ 14+e "7 — — (1 — ef'”) . (8)
K KT

Let us calculate the matrix element (HOM|pou [HOM) for the output state of the atom-mechanical
QND gate assuming single-boson states at each subsystem’s input (single-polariton for the atomic




subsystem and single-phonon for the mechanics). The gain & is defined by the pulse duration 7
and by the product of the coupling strengths of the light-atom ¢, and optomechanical g,, interac-
tions. Figure 3(a) demonstrates the dependence of the HOM elements and the corresponding input
coherent thresholds on the value of the coupling rate for the different p, assuming equal coupling
ga = gu = g for atoms and mechanics. The gate parameters were chosen close to the optimal
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Figure 3: Matrix element (HOM|pout|HOM) of the output state for the non-adiabatic atom-mechanical QND
gate with the mixture (p [1){(1] + (1 — p) [0){0])a ® (p |1){1| + (1 — p) |0)(0])m at the input. a) dependence on
coupling strength for the different p = 1, 0.93, 0.67, 0.63. b) dependence on pulse duration for the different g
(thickness indicates the coupling strength — the thickest for g = 0.045x, the middle one for ¢ = 0.07x and
the thinnest for g = 0.15x). The inset demonstrates dependence on coupling strength for the different pulse
duration (thickness indicates the pulse duration — the thickest for 7x = 200, the middle one for 7k = 90 and
the thinnest for 7« = 20). For both (a) and (b), km = ka =K, ga = gu = g, n = 0.9, S = 7dB.

ones, i.e. providing the highest possible value of the HOM element, so the picture is similar to the
previously considered gates. However if the efficiency is too low, the HOM element cannot surpass
the input threshold even for p =1 in contrast to the atom-light and mechanical-light gates.

The main part of the Fig. 3(b) demonstrates the dependence of the HOM element on the pulse
duration for the fixed S and g and the inset shows the dependence of this element on the coupling
for the fixed S and 7. These figures demonstrate that, similarly to the previously considered gates,
to obtain the highest possible value of the HOM element one has to find the optimal values of
both g and 7. Note that squeezing S itself is a parameter that has the optimal value, but optimal
squeezing is not very high regardless of all other parameters, and does not exceed 10dB. For
S = 7dB, high efficiency and low rethermalization the optimum is provided by 7k =~ 90, g ~ 0.07k.

There is a monotonic dependence on the two remaining parameters, efficiency n and the reheat-
ing rate I'y;. Maximum of the HOM element is delivered by highest efficiency and lowest reheating
rate. There is always a threshold value for the rethermalization Ty, that is for 'y /k > 0.01
no effect can be observed even with perfect other parameters like = 1 (no optical losses) and
p = 1 (ideally prepared initial state). Threshold for 7 strongly depends on the values of the other
parameters.

3 Methods

In this paper we investigate the possibility of observing an analogue of the HOM effect using a
quantum nondemolition (QND) gate by evaluating the HOM matrix element of the corresponding
output quantum state. We compare the performance of the gate with the one of a beam-splitter.
In this section we elaborate on the definitions and the methods we use to perform the necessary
computations.

A beam-splitter (BS) transformation, defined by the unitary operator Ugg = exp [@ (aTb — bTa)] ,
describes an evolution of two quantum oscillators with annihilation operators, respectively, a and
b. The only parameter of this transformation is the transmittance coefficient T = cos? ©. A QND
gate, defined by the unitary operator Ug = exp [G(a +at)(bf — b)/2}7 describes another type of
evolution of the two oscillators. The gain G is the only parameter characterizing the ideal QND




gate transformation.

There is a significant difference between these two transformations. The BS transformation is
passive (energy conserving), if initially there is exactly one excitation in each of the oscillators, at
the output of a BS they can appear bunched in a single mode via the Hong-Ou-Mandel (HOM)
effect. To have only one excitation in a single mode is insufficient to observe bunching because
of preservation of the total energy. Unlike BS, the QND transformation is active, which means it
is capable of changing the total number of excitations in the system (the energy of the system).
Despite the QND interaction can generate new quanta, it is still possible to analyze whether the
QND interaction is capable of generating the non-classical two-quanta superpositions going beyond
any classical states serving as input to the QND interaction. However, such analysis requires a
general approach to the HOM interference beyond the simple case with the passive BS interaction.
The first step to extend HOM effect to active interaction has been presented in [68].

In our generalized description, the matrix element of the quantum state that equals the success
probability of detecting two-photon HOM entangled states (the HOM element) at the output of the
unitary transformation U, can be introduced as |(HOM|U )i, |?, where |¢)iy is the initial state [69)].
Here, the HOM state is defined as [HOM) = (|0, |2), — [2),0),,) /v2. It is well known that a
BS provides an ideal photon bunching (the HOM effect). This means that the success probability
|(HOM|Ugs|¢)in|? at the output of the BS equals one. This effect occurs when two identical quanta
enter a balanced beam-splitter (T = 0.5), one in each input port (the input state |@)in = |1)a|l)1)-

In order to compare the two transformations in the context of the HOM effect, let us look at
the matrix elements of the output state of each of the transformations. For simplicity, first let us
restrict the input |p)i, to the space of coherent superpositions of vacuum and one excitation of
each mode, that is an arbitrary pure superposition of |1),|1)p,0)al1)b, |1)al0), and |0)4|0), (for
the case of full infinite space see Supplementary Materials). Then, to obtain the desired matrix
element we need:

4G(8 — G?) 2G?
ey Al + ey (000l (9)

Tt clearly shows that the HOM matrix element provided by the inputs |0),|1)1, and |1),]0)}, is equal
to zero for both BS and QND transformations. The matrix element provided by |0),|0)p input is
equal to zero in the case of a beam-splitter. However, for the QND gate this element is a function
of the gain G and equals zero only in the trivial case with G = 0. That is, by varying the gain
of the QND gate, it is impossible to make the contribution of the input vacua |0),|0)p vanish, in
order to render these two transformations fully analogous. The active transformation can therefore
generate a non-zero HOM element even from two ground (vacuum) states.

For the case of a QND gate with |1),|1)}, at the input, one can observe that for a certain region
of the parameter G, the probability of bunching of both excitations in one subsystem is higher than
the probability of equal redistribution of the excitations between the subsystems. Visually, it is
characterized by the presence of the maximum of (HOM|po,s|HOM) (see Fig. 4(b)) approximately
equal to 0.26 for G ~ 0.87 (as compared to 1 for the BS with © = 7/4). However, we should
keep in mind that this correspondence to the case of a BS is not complete due to the non-zero
contribution from the vacuum input that is non-zero for the case of the QND gate but does not
exist in the case of a BS.

To overcome the issue of discriminating between the classical interference and non-classical
bunching, we define two nonclassicality thresholds by evaluating the maximum of (HOM]|pey [HOM)
over (i) all superpositions of coherent states at the output of the QND interaction: pou, = p* =
|a)alB)b{c]a{Blp and (ii) all superpositions of coherent states, phase averaged, before the QND
interaction: pout = ﬁ I dgoadcprgpc"hUé. Here we use the notation o = |a|e??= and 3 = |B|ei¥>.
For the BS interaction, the two thresholds coincide.

To obtain the first threshold let us take two random coherent states derived in the Fock basis:

<HOM| UBS = —sin (2@) <1‘a<1‘ba <HOM‘ UG =

N 2 &, Im)
a)=e" 7 ) o=, |f)=e 2 et 10
The HOM element corresponding to this state is the following:
1
hout = |<HOM|O&>a|ﬂ>b|2 = 167‘a|2*|5‘2|a2 _ 62|2~ (11)




It can be shown that [(HOM|a),|B),|? < 1/e? on any coherent states, that is for any complex «
and S. This allows to prove that if the output state poys is classical, i.e. is a mixture of coherent
states, then 0 < (HOM|pous[HOM) < 1/e? (see Supplementary). Thus, 1/e? is the output threshold
for the HOM interference. That is, when measuring the HOM element, a value greater than 1/e?
indicates the nonclassicality of the output state, as no classical state (no mixture of coherent
states) is capable of providing such value. This threshold is shown by a thin gray dashed line in
the Fig. 4(a).

To derive the input threshold, let us use two arbitrary coherent states as the input states of
the gate and calculate the maximal possible HOM element for the output state pSot = UGpCOhUé.
Bunching of the excitations (maximum of the HOM element) can be provided not only by the
second-order interference (the non-classical effect we are interested in) but also by the classical first-
order one [70, 71]. To avoid the input of the first order interference we assume phase-randomized
coherent input state which practically means averaging over the phases of the input coherent states.
This allows us to eliminate the interference enabled by the degree of freedom (phases), which only
the coherent states have in contrast to the pure |1),|1)y, so that the comparison is more adequate.
Thus the input threshold for the ideal gate is as follows:

hin = max {1 //dgﬁa dop |(HOM|Ug|rae™®)a|rpet® )2 | . (12)
Tayry | 472
The dependence of the (HOM|pSSE [HOM) on the gain G for all the coherent states (see Fig. 4(b))
is illustrated by the area restricted by an input threshold (blue curve) that has a specific complex
shape (explained in Supplementary).

In order to evaluate the robustness of the QND gate against photon loss, let us examine an
incoherent mixture of vacuum and single-photon states at each input port of the gate. Thus, we
consider the following input state

ol = (pa 1D+ (1 =) 10)(01) - (o [1)(1] + (1= py) [0)(01) . (13)

where the parameters p, 1, characterize how much vacuum has been admixed to the single-photon
state at the corresponding input ports, and calculate matrix elements for the output state of the
gate. Using Eq. (9), we can obtain the HOM matrix element of the output state of the gate

) = Va0

16G2(G2 — 8)2 4G

(p) - — - 1L C2\3
(HOM|pE) [HOM) = p.py, TeNE +(1—pa)(1 pb)(4+G2)3.

out

(14)

This matrix element is symmetrical with respect to p, and py,. Surprisingly, the independent
coherent superpositions [¢), = (\/Pa |1) + V1 =pa [0))a - (/b |1) + /1 —pp |0))p at the input
give rise to exactly the same matrix element Eq. (14) as does the mixture Eq. (13).

Figure 4(b) demonstrates (HOM|pout|[HOM) depending on the gain, assuming p, = p, = p,
compared with the case of the pure input |1),|1)1,. Expectedly, as the parameter p decreases,
the contribution from |1),|1)1, term decreases, while the contribution from |0),|0), term increases.
Visually, it is reflected in the gradual change of the curves’ shape — for relatively high p, the
maximum first decreases, then smoothly shifts to the right. Thus, the maximum of the HOM
element decreases from 0.26 at p = 1 to 1/e? at p ~ 0.7, which corresponds to the output threshold.
At p =~ 0.48 it already crosses the input threshold, so for lower values of p the HOM element lies
below the input threshold at the gain G =~ 0.87. For p < 0.40 the HOM element lies below the
input threshold for any gain.

In order to calculate the matrix elements for an ideal (without additional noise) transformation,
it is enough to know the form of the unitary transformation Ug. Thus the matrix element of the
output can be calculated as:

(HOM|pous|HOM) = [{(HOM|Ug| )i = [(HOM|Ug ) _ [n)(nl, [m)(ml, [¢)y,| ,  (15)

n,m
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Figure 4: ldeal QND interaction: a) Scheme of the QND interaction. States at the input ports are independent
in contrast to the output ones. The output state is characterized by two-mode homodyne tomography [69].
b) (HOM|pout|HOM) matrix element of the output state for the ideal QND gate as a function of the gain G
calculated for the different cases of the input: quantum input |1).]|1), (solid black curves), mixture input Eq. (13)
(dashed black curves, dashing scale indicates parameter p). Dashed gray line is the output threshold. Blue curve
is the input thresholds (phase randomized) restricting area that covers all the possible values of the matrix
elements of the output state of the gate in the case of the random coherent input with averaged phases.

This approach is convenient to use for calculation of the ME when the input state has an appropriate
representation in the Fock-state basis |n),|m)p. We used this approach to obtain the output
threshold and the HOM elements for the case of an ideal gate.

In the general case of a Gaussian transformation including noises it can be convenient to take
a different approach described below. We can use the Wigner function (WF) of the output state
and define the matrix elements (¢|pous|) of the output state as:

Wlpalih = (4 [ [ [ [ e Wiy ) W), (16)

where Woue(r) is the WF of the output state, and W),y y(r) is the WF corresponding to the

operator |p)(1p]. Woy is a function of the column-vector of quadratures r = (2, Pa, Tb, pb) . For
the two mode case, the WF corresponding to the operator &, is defined as follows:

1 i(PavatpLuL)
We(Ta, Pas T, ) = w//dyadyb - S y; (b + *Iﬁlma a>\wb — %b>~ (17)

Thus, the WF of the HOM projector [HOM)(HOM] is the following:

2 2 2 2
tpR et
WHOM(r) _ <pa Py a b

2 ) ((Patpb)* 4+ (zata)? =2) ((Pa—pb)* 4 (T — 1) > —2).
(18)

Both described approaches are identical and, being applied to any ideal transformations, they
give the same results. However, for the non-ideal gate we can apply only the WF-based one since
we have to take to account the noises. Moreover, to obtain the WF of the output state in the case
of a non-ideal gate, we have to use the language of the covariance matrices. An arbitrary Gaussian

transformation maps the quadratures of the oscillators as [72, 73):

1672 x

1 0 G O
ut — CZ-‘GI‘in + rN; Where fOr a QND gate TG = 8 é ? 8 ’ (19)
0 -G 0 1
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and rY is a vector of the quadratures of the added noise.The covariance matrices are transformed
according to

1
Vout = T6VinT¢ + W, where [Volij = 5(["1-1"]- +r%r%;)—(r%) (r*;) (e =in,out,N). (20)
This approach works the best with the Gaussian states, for which the WF can be written as
W(V,r,R) =

1 1 .
vy P (—2(1' ~-R)TV 1 (r - R)), (21)

where R = (X,,Ya, Xy, Yb)T is the column-vector of means and V' is the covariance matrix. Using
an approximation [73] to represent a single-photon state as a combination of vacuum and a thermal
state, we are able to use the Wigner-function based approach for non-Gaussian states such as |1).
We used this approach to calculate the HOM elements and the input thresholds for the atom-light,
optomechanical and atom-mechanical gates.

To calculate the input threshold for the non-ideal gate let us take two random coherent states
as the inputs of the QND gate (for two coherent states, Vi, = I4x4, a 4 x 4 identity matrix):

W/in (r7 R) = W(Vout7 r, R)7 Wout (r7 R) G) = W(VYOUM r, TGR) (22)

Using Eqgs. (16) and (18) we can obtain the HOM element (HOM|p [HOM) = Mgom (R, G) as a
function of G and R. We can obtain the input threshold (phase randomized) as a function of G:

1
hin = 11313%) |:47T2 // dp, dpy, MHOM(R7 G) , where (23)
R = (X,,Ya, Xb, Yb)T = (R, c08[@a], Ra sin[p,], Ry, cos[py)], Ry sin[cpb])T , (24)

that can be used in the case of a non-ideal QND gate. In our work, we investigated three types of
non-ideal gates, for each of which we used the mixed state Eq. (13) as the input. Note that the
output threshold is fixed, but the position of the input threshold strongly depends on the physical
parameters of the gate.

4 Discussion and Conclusion

We have proposed and investigated the Hong-Ou-Mandel bunching effect of single quanta exci-
tations in a light-atom, an optomechanical and finally, a hybrid opto-atom-mechanical system.
The effect reveals two photon interference beyond the classical states. In order to prove the
non-classical character quanta bunching, we devise coherent-state-based thresholds for the output
bipartite quantum state. The output threshold, computed as the maximal HOM element achiev-
able by two coherent states at the output, marks the HOM elements attainable by the classical
states irrespectively to the interaction. The input threshold, equal to the maximal HOM element
possible to obtain at the output given two phase-randomized coherent states at the output, shows
the bunching enabled by the interference of intensity of classical sources for the same interaction.
We prove that both thresholds can be overcome with feasible parameters of opto-atom-mechanical
systems.

We found out that in the scheme, which can be controlled by the set of coupling rates, the
mediator pulse duration, and squeezing, there are optimal values of each of these parameters
to observe the HOM bunching. These optimal control parameters are influenced by the value
of the optical loss in the system and the heating rate due to the coupling of the mechanics to its
environment. Importantly, we have shown that the optimal parameters are either within the values
implemented in the already reported experiments or within the reach. For the choice of numerical
parameters, we were inspired by Refs [26, 27]. It should be noted that for the HOM effect the
important are not the absolute values of the parameters of the gate (with the exception of optical
losses and thermal noises, which the smaller the better), but the relations between them.

For the atom-light gate the only requirement to observe the HOM effect is to provide a strong
QND interaction between a collective atomic spin and light [56]. Atoms, usually a cloud of alkali
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metals as Rb or Ce with 107 — 10! units, can be either cooled, or taken at the room temperature.
They can be placed into the cavity, but there is no need (if a cavity is used — adiabatic regime
is preferable). The coupling strength g, obtained in the experiments usually is about hundreds
of Hz and can be varied by the number of atoms in a cloud or photons in the pump [54, 55, 74].
For the HOM effect the important ratio is the pulse duration multiplied by the coupling strength.
To maximize the HOM effect it should be g,7 ~ 0.87 for the free space case (and g,7 ~ 5 with
ga =~ 0.05k, if cavity is used), which allows to use of a wide range of the pulse durations.

To obtain the HOM effect for the optomechanical gate one has to provide a QND interaction
between a mechanical oscillator and light with a sufficient coupling strength g,;. Normally gy is
about tenths of the optical decay rate k, [75] that is enough to achieve the result. The HOM
effect occurs when the interaction is in the adiabatic regime. Similar to the atom-light gate the
maximum of the HOM element is provided at the ratio g7 ~ 5 with gy =~ 0.05k,,. For this type
of the gate it is extremely important to cool the mechanics since the thermal noises can totally
destroy the effect. For the rethermalization rate T'y/ky > 1072 the effect vanishes. In recent
experiments it is already possible to decrease this value up to the I'y, = 1074k, [12, 14] that for
the HOM effect can be considered as an ideal cooling since a lower rethermalization would not give
a noticeable advantage.

The atom-mechanical gate combines recommendations for the both previous gates. In this
work, we assumed the atomic ensemble be placed in a cavity of the same optical decay rate as for
the optomechanical cavity and investigated the situation when the coupling constants are equal.
Both these assumptions are not necessary to observe the effect.

It is required to ensure that the light that has interacted with the atomic subsystem completely
enters the optomechanical cavity (to increase the efficiency of the gate), but even strong optical
losses still do not lead to the complete disappearance of the maximum of the HOM element.
This means for this effect (evaluated by the input coherent threshold) problems associated with
distortion of the temporal profile of the pulse during the interactions are not so significant. If atoms
are in a free space the time durations of about 1ms that are usually used are suitable. For the
cavity configuration with the same parameters for the both parts of the scheme (assumed in our
work) we need to be careful with the optical decay rate. We need to decrease the pulse duration
from 1ms to 7 = 0.14ms (it is possible, still much higher than the atom transient time and the
oscillator period), keeping the coupling constant as g, = 2r x 7TkHz [54]. According to [75] for the
optomechanical part xy = 27 X 100kHz (7ky = 90 for 7 = 0.14ms), while the coupling strength is
still about tenths of the optical decay rate. Thus, relations 7x = 90 providing g, = gu = 0.07x are
experimentally achievable, but it is better to keep atoms in a free space and do not chase to make
two subsystems identical. Recent experiments [26, 27] demonstrates the possibility to obtain the
gate between mechanical and a spin oscillators with the achievable coupling of the order 1 — 10kHz.

The atom-mechanical gate is symmetric. For this type of the gate it is possible to increase the
value of the maximum of the HOM element, i.e. improve the visibility of the HOM effect, by using
a squeezed pulse as a light mediator. Squeezing should be optimized in accordance with other gate
parameters, but anyway it should not be strong: 5 — 7dB is good enough, strong squeezing would
destroy the effect.

Thus, we can safely say that at the moment the physical capabilities of the experiment allow
observing the HOM effect for all three types of gates. It will be advanced test of the hybrid pulsed
gates opening joint experiments with non-Gaussian states of atoms and mechanical oscillators and,
in future, nonlinear hybrid gates using atomic and mechanical nonlinearities.

5 Data availability

The datasets generated and analysed during the current study are available from the corresponding
author on reasonable request.
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The schematic diagram of the setup that allows realization of the gate is shown in the Fig. 5.
Note that such an atomic-mechanical gate consists of two parts, which in turn are the QND
gates coupling the optical mode with the atomic (for the atom-light gate) or mechanical (for the
optomechanical gate) modes. Let us describe the model of each in detail.

atom-light gate optomechanical gate
Ci C;
(%in, Pin) (FoutsPout) | aparoy (@0 Pla) - (Eouts Dout)
@, T O———m]
1 N loss N
| |
pumpi > pump N
X z
(e, Pe) v Fu pci
magnetic
field R A | &
(XA»PA) XM,PM)
il M,
atomic ensemble e optomechanical
in a cavity cavity

feedforward

Figure 5: QND gate between an atomic ensemble and a mechanical oscillator: a quantum light pulse with a
rectangular temporal profile first passes the atomic ensemble in a cavity and then the optomechanical cavity
via circulators C; 2 and then goes to the homodyne detector (HD). Within the cavities the optical pulse is
coupled to atoms and mechanics respectively via QND interactions enabled by strong classical pumps. The
homodyne detection data are used to control the optical feedforward procedure after the detection to shift the
atomic quadratures. Canonical variables (X’A,PA), (XM,PM), (%, Pc), and (£¢,Ppe) are the quadratures of the
collective atomic spin, mechanical oscillator and intracavity modes respectively; non-canonical variables (£in, pin),
(Zout; Pout)s (£, Din) and (Zout, Pout) are the quadratures of the light field outside the cavities in free space at the
corresponding parts of the scheme. The homodyne measurement and magnetic feedforward control via magnetic
field phase shifter are optimized to perform the QND interaction and the squeezed light is used to achieve large
entangling power.

A1 Atom-light QND gate

A quantum pulse in a free space, described by the quadratures (2, (t), pin(t)), enters the cavity
(See Fig. 1, the atom-light gate part) that contains a cloud of alkali-metal atoms. To describe the
atomic subsystem we consider the state of an ensemble of atoms at room temperature, each having
two stable ground states. We assume a strong magnetic driving along the Z-axis for the atomic
ensemble that allows us to apply the Holstein-Primakoff transformation and consider normalized
collective spins (X A, PA) as very long-lived canonical atomic variables. Duration of the initial pulse
is 7. Optical damping rate of the cavity is k,. The pulse is accompanied by the strong classical
driving that ensures the QND type interaction with the Hamiltonian Hia = thX' aPc. For the
atomic part the coupling constant is the following [56]: ga = 3T'0\/Npnv/Nat/(27AA), where I'
— total spontaneous decay rate of the upper state, o — resonant photon absorption cross section
(0 = A?/2m), 7 — pulse duration, A — the Raman detuning, A — the beam cross section, Npp, Nat
— number of photons in the driving pulse and the number of atoms in the atomic ensemble.

The intra cavity field described by the canonical quadratures (Z.,p.) evolves in accordance
with this Hamiltonian. After the interaction field leaves the cavity, the field at the cavity output
is described by the quadrature pair (Zout(t), Pout(t)). Now the light and atoms are coupled. At
this stage we take the losses into account so we introduce final field (Zdetect (t), Pdetect (t)) that is
the (Zout(t), Pout (t))-field but with the admixed vacuum. We have to keep in mind that losses are
presented at any stage of the gate, so the losses characterized by a single parameter 7 (efficiency
of the gate) are effective and describe all possible losses in the system. We introduce the canonical
quadratures for the initial and final states of the light pulse as (X°,Y?) and (X", YU as the
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spectra at the zero frequency (formal definition is in Eqns. (28,29) below). Thus, the atom-light gate
transforms the initial vector (X, (0), Px(0), X%, Y?) to the final vector (X, (1), Px(7), X°ut, Yout),
Mathematically, the whole process is as follows. The Heisenberg-Langevin equations set is:

%C(t) = —Rade(t) + \/mxm( ) + gAXA(t),
p. (t) = 7K:Apc(t) + \/m in( );

Xu(t) =0, (25)
Py(t) = —gabe(t)
The solution of the set is:
() = %,(0)
Py(t) = Py(0) = V264 (O, (t) * Pin(t)) — Pe(0)O (¢) 1 — e rat
! . Oua(t) = ga 2
Ze(t) = V2ha(e7 "2 % 210 (1) + XA (0)Op, (1) + 2 (0)eRAL B =9 Foa (26)
Po(t) = V264 (€7 5 Pin(t)) + Pe(0)e™ "2
Here, the *-symbol is a convolution, i.e. f(t) fo f&—=tHg(t)dt'.

We use the input-output relations to obtam the field at the cav1ty output (outside the cavity)
and take the optical losses into account:

{ Zdetect (t) = \/ﬁ Zout (t) + v 1- n Zvac (t) where { Zout (t) =

V2kmTe
ﬁdctcct (t) = \/ﬁﬁout (t) + vV 1— n ﬁvac(t) ’ ﬁout (t) =V 2/€m Ac

We introduce the canonical variables for the initial and final light pulses as:

N 1 /7 - I
XO = —F Ain t)dt YO = 7/ Ail‘l t)dt 28
b= [ e 0= == [ e (28)
N 1 [T “ou IV A
Xout — F/ Tdetect (1) dt, Yo = \/7—_/ Ddetect (1) dt. (29)
0 0

Thus , we obtain the following atom-light gate (XA(0) = X9, P, (0) = Y9, X, (1) = X4, Pa(7)
Y,):

XA = Xg + NXAa Xout = TLXE + GLX% + 1QXL’ (30)
YA'A = YA*Q - GAYE + NPA? Yout = TLYE + NPm (31)

transforming the initial vector (XR,YQ,XE,YE) to the final vector (XA,YA,XO‘“,YA'O‘“). Here,
the gains G, ., transfer factors T, and noises Nx, , p, , are:

2T 2T

1—eraT
Gr =gay/—, GL = ga 7X\/ﬁ 1—-—F,

RAT

f 2 Y 0n s (35)

o ) V21— e7"AT) X
Nx, = m Xvac T Tmc(o) + v LLiXor, (36)

i B ey :
Koy = V=1 e + 0o 50(0) + v Ll Vo, (37)
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We use the following canonical variables

N 1 T
You, = r /O dte "2 T 5 (1), (38)

Yoi, = Lll/OT dt (flL(t) - \%) Pin(t), Xof, = L1 "t (flL( ) _ \%) Zin(t), (39)

with the following correlation relations (all other unspemﬁed combinations correlate to zero)

(YOYD) = (Yor, Yorn) = (Yor, Yor,) = (XPX?) = (Xog, Xor,) = 1, (40)
Ky PN K A A K

(Vora¥o) = g (Yor ¥2) = (Ror X0) = T (Yor, Yows) = {16 (41)

where the constants are determined as follows:
T T T fl (t) 1 2
Ki = / dt (emratr-0)*, L= / fRode, L= \// « < -—=
\/ 0 ( ) 0 ! 0 L NG

2(1 — —ka(T—1)

where f1(t) = (e—) (42)

7

:7/ dte™" 2T Ky, = f/ dt( 1) \1[) K, /OTdte“a“t) <flL(t)xlﬁ>

A.2  Optomechanical QND gate

A1

A quantum pulse described by the quadratures (Z{,(t), !, (t)) enters the optomechanical cavity
(See Fig. 1, the optomechanical gate part). To describe the mechanical part of the system we use
quadratures (X'M, PM) that refer to the dimensionless position and momentum of the mechanical
oscillator. Duration of the initial pulse is 7. Optical damping rate of the cavity is ky;, the rether-
malization rate is I'y,. The pulse is accompanied by the strong classical driving that ensures the
QND type interaction with the Hamiltonian HLM = hguXwup.. The intra cavity field described
by the canonical quadratures (&, p.) evolves in accordance with the Hamiltonian. After the in-
teraction field leaves the cavity, the field at the cavity output is described by the quadrature pair
(246 (t), DLy (). Now the light and mechanics are coupled (and we can evaluate the HOM-element).
At this stage we take the losses into account so we introduce final field (£} ;..¢ (1); Phetect (£)) that is
the (£),(t), Phyt (t))-field but with the admixed vacuum. We have to keep in mind that losses are
presented at any stage of the gate, so the losses characterized by a single parameter n (efficiency
of the gate) are effective and describe all possible losses in the system. We introduce the canonical
quadratures for the initial and final light pulses as (X9, Y9) and (X/°Ut, Y’°u) as the spectra at the
zero frequency. Thus, the optomechanical gate transforms the initial vector (X (0), Py (0), X9, Y?)
to the final vector (X (7), Py(7), X/out Y7out),
Mathematically, the whole process is as follows. The Heisenberg-Langevin equations are:

EL(t) = =Rl (t) + v2hadly (1) + guXu(t),
B(6) = —maB (1) + VBBl (1),

Xm(ﬂ = éXNn

pM (t) = 6PM - gMﬁ/c(t)~

where éxM Py are the operators for the mechanical noises with the following correlation relations
(Cxp o (t )CXM,pM( ) = yu(2nen + 1)0(t — t') = 2I'y0(t — t’). The solution of the set is:

K1) = V72T, 9+ X, 0)

P(t) = chupm V2 (O (8) 5 5, (£)) = PL(0) Oy (1)

(t) = VZrm (€™ 5 81, (5) + (O (1) * Cxy (1)) + Rua(0)Oy (1) + 2 (0)e 0
PL(E) = /Ty (1! *pm< )) + BL(0)e !

1— eant

(43)

(44)

GKM (t) = Om o
M
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We use the input-output relations to obtain the field at the cavity output (outside the cavity)
and take the optical losses into account:

ildetect(t) =1 Thut (1) + /T =1 Tyac(t) where Thue(t) = V2R (t) — 2/ (t) '
ﬁiietect (t) = \/ﬁﬁ{)ut (t) + Mﬁvac (t) H

We introduce the canonical variables for the initial and final light pulses as:

. 1 [T N 1 [T
XY = NG / 4, (t)dt, Y = 7 / Piu(t)dt, (46)
X/OUt f/ xdetect dta Y/out \/*/ pdetect t (47)

Thus , we obtain the following optomechanical gate (Xu(0) = X0, Pu(0) = YO X, (1) = Xy, Pulr) =
Yu):

Xy = X% + Ny, X'out =T, X% + G, XY + Ny, , (48)
?M - YA?S/I - GMYQ + NP]\,17 Y/Ollt = TLYE + NPLa (49)

transforming the initial vector (X9, Y9 X0 YO) to the final vector (Xy, Yy, X/Out, Y70ut)  Here,

M?
the gains Gy, ., transfer factors T, and noises Nx,, , py . are:

2T [ 2T 1 — e F"MT
GM = gu 57 GL = gm a X \/77 |:1 — W:| 5 (50)
TL:\/ﬁ(Lfl)a (51)

NXM =V T2FM éxMa (52)
G K
= /120y EPM — PL(0)O sy (t) + leonM, (53)

' VB — e
NXL: 1_nxvac+?

VIl — )

L(0) + Vi LLiXor, +v/V2TWMEEM,  (54)

NPL =V 1- n f)vac + \/m ﬁlc (0) + \ﬁ Ll—lYOfl- (55)
We use the following canonical variables
3 1 T —rkm(T—t) A
Youy = — dte™™ Pin (1), (56)
K1 Jo

o= [(a (B0 - Lo Ke =L [Ta (B0 2w e

X 1 T N
AXI\/I _ o ~

with the following correlation relations (all other unspecified combinations correlate to zero)

<Y2YE> = <Y0KMY0KM> = <Y0f1Y0f1> = <ngg> = <X0f1 X0f1> = <6XM éXM> <Cf)§MCXM> 1,

~ N K A N N N K N A K A 2
(Youy Yo) = *f, <Y0f1Y2> = <X0f1X2> = i, (Yor, Yory) = & ) <CfXMCXM> =
K, Ly L:1Ky 2

f
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where the constants are determined as follows:
! — e (r—1))2 i i fl (t) 1 ?
,/ L3, = / dtfs(t)
B 2(1

— (=) £ul) = V2 g (i (T = £) = 1 4 e7ra(7=1)
\/F » J3 \/F I{%[ ’

Y A L (7 (Al 1 T et (1)1
Ki=—— [ dte"m(=0) K :—/ dt - —),K :/ dte~m(r=0) (I .
f ﬁ/o ‘ UV L ) mT e L

A.3 Atom-mechanical QND gate

where fi(t)

To establish the gate we connect the atomic and optomechanical cavities in such a way that the
light passes them sequentially, interacting first with atoms and then with mechanics. Thus, as the
input light for the optomechanical part we take the output light of the atom-light part.

A quantum pulse described by the quadratures (Zi,(t),pin(t)) enters the cavity (See Fig. 1)
that contains a cloud of alkali-metal atoms. To describe the atomic subsystem we consider the
state of an ensemble of atoms at room temperature, each having two stable ground states. We
assume a strong magnetic driving along the Z-axis for the atomic ensemble that allows us to apply
the Holstein-Primakoff transformation and consider normalized collective spins (X As P ) as very
long-lived canonical atomic variables. Duration of the initial pulse is 7. Optical damping rate
of the cavity is k,. The pulse is accompanied by the strong classical driving that ensures the
QND type interaction with the Hamiltonian Hia = —thPA:ch. The intra cavity field described
by the canonical quadratures (Z,p.) evolves in accordance with this Hamiltonian. After the
interaction, field leaves the cavity, the field at the cavity output is described by the quadrature
pair (Zout(t), Pout (t)). Now the light and atoms are coupled.

At this stage we take the losses into account so we introduce the field (Z{ (t),p!,(t)) that is
the (Zout(t), Pout (t))-field but with the admixed vacuum. We have to keep in mind that losses are
presented at any stage of the gate, so the losses characterized by a single parameter 7 (efficiency
of the gate) are effective and describe all possible losses in the system.

A quantum pulse described by the quadratures (&, (t), p!, (t)) enters the optomechanical cavity.
To describe the mechanical part of the system we use quadratures (XMJsM) that refer to the
dimensionless position and momentum of the mechanical oscillator. Optical damping rate of the
cavity is Ky, the rethermalization rate is I'y;. The pulse is accompanied by the strong classical
driving that ensures the QND type interaction with the Hamiltonian HLM = hguXup.. The
intra cavity field described by the canonical quadratures (., p.) evolves in accordance with the
Hamiltonian. After the interaction field leaves the cavity, the field at the cavity output is described
by the quadrature pair (2] . (¢), P (t)). Now the atoms and mechanics are coupled.

Afterward the pulse is homodyned and the output of the detection is used to displace the atoms
in the phase space. Here, we consider squeezed light, since for such a gate, squeezing allows to
increase the HOM element value.

Mathematically, the whole process is as follows. The Heisenberg-Langevin equations are:

Zo(t) = —Kade + V2halin (63)
Pe(t) = gaPa(t) — Kabe + V2KaPin (64)
Xa(t) = —gade(t) (65)
: (66)
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The solution of the set is the following:

where O, (t) is

We use the following input-output relation:
QU (1) = V2R Q1) — Q™ (1), Q= &, Pe-
Thus, the field at the cavity output (outside the cavity):

Tout(t) = ((2mae™"" = 0(t)) * Zin(t)) + V2ZraZe(0)e ™™,

ﬁout(t) = ((2/'€A€7KA26 - 6(t)) * ﬁin(t)) + \/RR,(O)@KA (t) + mAc(O)einAt

Next is the optomechanical interaction. The Heisenberg-Langevin set is:

EL(t) = k2l (1) + V2R, (1) + gu Xa (1)
Pe(t) = —hnado(t) + V2% Pl (t)

X (t) = (xu

Pu(t) = Coyy — gual(1)

) =
with correlation (Cxy, Py (£)Cxar Pag (1)) & 2058 (E — t).

The solution is

Xu(t) = /120 {4+ X,(0)
Py(t) = /720 CP 4 Pu(0) = V2has (Oreyy (8) 5 Py (1)) — PL(0)Oeyy (£)

A

F(1) = V2o (7 5 2 (1) + (Onsy (1) * e (1) + K (00010 (1) + 2L (0)e
/(t) /ZHM (e*ﬁMt*pm ))+pc 71{Mt
where O, (t) is:
Orne() = guu™ _::Mt

We use the following input-output relation:
/out( ) \/MQ lln(t)7 Ql — ',fj:yﬁlc
Thus, the field at the cavity output (outside the cavity):

2 ) =

out

= ((@rue™™ = 6(1)) * #4a(8)) + Vs (O (1) 5 Cxs (1)) + R0s(0) Oy (8) +

Pt (6) = (2™ = 5(0)) % Fla (1)) + V2l (0)e ™

Let us take the optical loss into account as follows:

i‘{n(t) = \/ﬁ ',i‘OHt (t) + 1 - 77 j;vac (t)
ﬁ{n(t) = \/ﬁﬁout (t) ++v1-7 ﬁvac(t)

. (T4)

—Kkmt
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Now we have to detect the light outside the optomechanical cavity. For simplicity let us take
Ka = Ky = K. We have to detect the X-quadrature of the output light:

(1) = i (42 te ™ — dre™"" 4+ (1)) * 2in(1)) + V26X (0)O,y, () + Noise.  (87)

We assume a rectangular pulse. Thus

7 /ou 1 T A
X - /O i (). (35)

To obtain a symmetric gate we need to shift one of the quadratures. Thus, after detection we
shift of the atomic quadrature by the feedforward procedure with Ky coefficient:

XA(T) _>XA( )-l—K X/out K= \/27777— I\:I/(E< ’:-T(_/{I::_-il;t;é’r_2) (89)

The symmetric QND Gate is characterized by the equations that read:

):(A(T) = {A(A(O) + 6X,(0) + Nx,
Py(7) = Ps(0),

XM(T) = XM(O) + Nxyy,

pM(T) = PM(O) - ®PA(0) + Npy,,

2
,where & = QAQM\/ﬁ? (e™"" (kT +2) + kT —2) (90)

Here, the noises are defined as:
mPA = 07 (91)

me = /12"y éXM7
9aV2 i | Ki g / gMKf 4FM i
— 11’1 7X11’1 XV&C M
‘ﬁxA Kgf + K5 \/: £
+ K \/%(1 e "T(2kT + 1)) (1—e7") | 2:.(0) + K 2 (1 e*"”)ﬁ:’ (0)
—(1 - KT — — A Z (1= !
Vokr ga A\ et

Npy = —gu(l —€e™) +\/7?FMCM_ 2] gKMPm_
1_ — KT 1
R e SRR o
K
GRonPu = /T dtCxt,y Py (1), (92)
V12T Jo ’
<é§X1\AC’fX1\A> _ éP]\/{éPM> — 17 <éXI\/IéP]\’I> — EPMC’:XM> =0 (93)
“ K; kT 2 ~ ; K3K4
fXM = m ((KJT — 1 + € ) * CXM (T)) ’ <CfXMCXM> = 77 (94)
6K
K. — 95
3 \/3 T 2n7(3 + wr(r — 3))) — 8¢ 7 — 12¢ T .
2(1 — KT) — 2¢7"7 4 K272
K, =
, - (96)
. K
Xvac — K 1 —2e kT T K, =
1 (( e ") * Byac(T)) 1 \/KT 0t de T — 2¢2nT (97)
f)vac =K, ((1 _ e—,‘i‘f‘) *ﬁvac(T)) K, = \/ 2K (98)
) 4e=KT 4 2kT — 3 — e~ 26T
P = Kq ((1— "7 (267 + 1)) % fin(7)) (%9)
2K
K. — 100
’ ¢(2m —T) +4e T (267 +3) — €27 (5 + 4rT(2 + KT)) e

24



X" =Ky ((1—e™) * dia(1)) (101)

Xin = K5 (1 —4r7e ") * & (1)), (102)
K
K- = 103
¥ \/(m‘ —4) + 8" (1 4 k1) — 4e=257(1 + 267(1 + k7)) (103)
2e™rT 2 —4)—2e727(1 42 N
i, = 2B 7 ) 22 TRUEAT) gk — KKK (104

R

The physical parameters of the systems are the pulse duration 7, the optical decay rates of the
cavity K, the coupling strengths g, ., the gate efficiency 7, the mechanical damping coeflicient
vu that shows how good the mechanics is isolated from the thermal bath with average phonon
number ng, (the two latter parameters are combined in the reheating rate I'y, = vy (204, + 1)).

Figures show the dependencies of the HOM element on different parameters. We assume that
Hong-Ou-Mandel interference takes place if the HOM-element of the output state of the gate lies
above its corresponding input threshold.

a b
: : 0.30 ————————————— T r
— Iy =0.00lxy,n =1
03} 9u = 0.06ry
025 ==222 Ty = 0.01ky,n = 0.1
= = 02
=< =
©] Q 020 1y ky = 100
= =
E ] 0.15
< S " houtput threfhold (1/e) N ________ MM
= =
o o o0
Z S S
005 e .
000 u inpl‘lt thresholds ‘ ‘ m input thresholds
0.00 0.05 0.10 0.15 020 Our?on T e om0 oms 0.20
gA/KA ,(]M/’*'fl\x

Figure 6: Matrix element (HOM|pou[HOM) of the output state of the gate as a function of the coupling strength
for the pulse length 7xa = 100: a) Light-atom QND gate with the independent single-photon (light) and
single-polariton (atom) states at the input. Dependence on coupling strength ga with efficiencies n = 1, 0.9, 0.1.
Well pronounced maximum shifts to the left with decreasing efficiency. The inset demonstrates HOM-element as
the function of the pulse duration Tra. b) Light-mechanical QND gate with the independent single-photon (light)
and single-phonon (mechanics) states at the input. Dependence on coupling strength gu for the rethermalization
rates I'v = 0.01xum, 0.001kw for the different efficiencies (n = 1, 0.1). Note, 'y = 0.01kw is already too high
for (HOM|pout|HOM) to surpass the output classical threshold, but even for = 0.1 the HOM-element lies quite
close to the input classical threshold. For both (a) and (b), the dashed gray line is the output threshold and the
blue curves of the corresponding thickness and dashing are the input thresholds (phase randomized).

B Ideal QND gate. Nonclassicality thresholds

Here, we first describe the ideal case of the Quantum NonDemolition (QND) transformation and
compare it with the beam splitter (BS) transformation. We then proceed to introduce the matrix
elements of the output quantum state, that correspond to the bunching of excitations, and describe
how to calculate them in different cases.

B.1 Comparison of a beam splitter with a QND transformation

A beam splitter (BS) transformation, characterized by the Hamiltonian Hgs = ©%hi (a'b — bia), de-
scribes an evolution of two quantum oscillators a and b. The only parameter of this transformation
is the transmittance coefficient T = cos? ©.

A quantum Non-Demolition (QND) gate, characterized by the Hamiltonian Hg = Ghi(a +
a®)(bf —b)/2, describes another type of evolution of the two oscillators. Gain G is the only parameter
characterizing the ideal QND gate transformation.
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Figure 7: Matrix element (HOM|pout|HOM) of the output state for the non-adiabatic atom-mechanical QND
gate with the independent single-boson states at the input: a) dependence on coupling strength for the different
efficiencies n = 1, 0.8, 0.1. Blue curves of the same dashing indicate the corresponding input thresholds.
Efficiency n = 0.1 is too small to allow HOM-element to surpass the input thresholds. b) dependence on
the squeezing S of the light pulse for the different efficiencies n = 1, 0.8, 0.1. For both (a) and (b),

KA = RKm = K, ga = gu = g.

Hamiltonians and unitary transformations corresponding to the BS and QND transformations

are the following:

= 0" (afb — bla)"

Hgs = Ohi (a,Tb - bTa,) , Ugs = ng_o B E— ), (105)
G, . g”(a* + a)”(bT —b)"
_ y(pt _
Hg = 5 hi(a+a")(d" —b), Ug = 7;:0 o . (106)

For Ug we can use the Zassenhaus formula and derive it in the normal order:

[e's) 00 Vi, g lebm S - — 7 — 4
Vo= gt 3 (a)a"” (=1)™ (") . moniog N
"0 i Mt (PR) R Umd (2 (-2) 2 2
where Ny is the set of natural numbers including 0.
et(af-i-a) _ etaTeme——[a al _ emTemeé, et(bi—b) _ etb*e—tbe—é[bﬂ—b] _ ethe—tbe—é
i (GT +a)" mo— i (af)iaj fiti+2k i (bT - b)"tn _ i (—1)m(bT)lbmtl+m+2k
n! 4 1151k12k ’ n! Umlk!(—2)F ’
n=0 i,5,k=0 n=0 l,m,k=0
(107)
(al +a)" o~ Onitit2k i e (al)'a’
— = ﬁ(a )'al = o noig (108)
n! i7§0 i151k12 ,;0 ilj! (TJ)!Z i
(bT 7 b)n G (71)m : 5n J+m42k = (bT)lbm
—_— ("' 109
n! l,mZk::O I'm!k!(—2)k ; llm! (B=lom)1(—2) == (109)

In the article we are interested in (HOM|Ug Bs|®)in, where (HOM| = (1/v/2) ({0]a (2], — (2[a(01)-
Then we need (HOM|Ug ps. Note that even (1],(a’)? = 0 (and (2|.(a’)® = 0). Then, using
0]a(a)* = VEU K]y (1]a(a)* = /(k + D)k + 1]a, (2la(a)® = /(k +2)!/2(k + 2|a, We can easily
obtain:
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I. For the QND transformation:

(HOM| Us = —= (0120 — (21,{0]) Ve = (110)

_ i (_1)mg"m(,/(m+2)(m+1)<m+2|b<j\a+ (G +2)0+D{mlp(+2la
nag=o VI 2- (s 2 () (-2)7

C ViFLmhgi+ B (bl .
(=lmd) g mt L (nom) L (9) e 2. (R 9t L (gm)) L (—2) e

m 4 1{m + 1| (jla (m]b(jla

+ ; n—j 1— i T n—i n—j o n—2—m J*

(2 (=) (2 2 ()2 (g ()

Let us use |¢)in = |1)b]1)a and obtain matrix element [(HOM| Ug |1)p|1)a|*:

00 k 2k+1(2k+1 o0 k 2k+1(2k—|—1) 16G2(—8+G2)2
|(HOM| Ug [1)1]1)a |2;) CEEe +k§ k, I E i 7o
(9= G/2). (111)

II. For the BS transformation:

(HOM| Ups = % (21 (0]a — (O] (2a) U =

= e 2y (V2)R (1a(lhy | (=10 (2v2)" (v2)™ (2[5 (02 — (0[6(2]a)
Z:: ( 2n 1 1)! + 2n)! ) ‘

(112)
Let us check the result by obtaining [(HOM| Ugs |1)p|1)a|?:

B n+1@2n+1(2\f)n+1(\/§)
-3 E

(2n 4 1)! ?=4T1-T), (cos?@ =T).

|(HOM]| Ugs [1)b|1

(113)

If we restrict ourselves by the limited input subspace, including only [1),]1)p,]0)a|1)1, |1)a]|0)s and
[0)4]0)p, the formulas can be simplified:

X 1\n+l 2n+1
(HOM| Ugs = _ ( 1)(2n (f?))' (1]o(1]p = —sin (20) (1] (1]p, (114)
n=0 '
O (1) 2k+1 _1\k 2k+2
(o] v = - CUHEAEC B LR ) o OB E2E 0l =
k=0
_ G2 2
— g i + 7 G OO (115)

In the case of the general input BS transformation provides non-zero matrix elements exclusively
for |©)in = [1)al1)b,10)al2)b, |2)a|0)r,. However, the gate transformation generates and annihilates
excitations in pairs. That means that, for instance, if at the gate input there are states with an
even number of bosons (as [0).]|0)p, |1}all)b,|1)a|3)s etc.), then (HOM|pout|[HOM) will be nonzero
(some functions of the gain). If at the input of the gate there is a state with an odd number of
excitations (as |0)a|1)b, [1)al0)b, |1)al2)b, [2)al1)b etc.), then the matrix elements of the output state
will be zero.

There is a significant difference between these two transformations. The BS transformation is
passive, it neither creates nor annihilates excitations in a system of two harmonic oscillators. If
initially there are exactly one excitation in each of the oscillators, at the output of a BS they can
appear bunched in a single mode via the Hong-Ou-Mandel (HOM) effect. It is not sufficient to have
just one excitation in a single mode to observe bunching. Unlike BS, the QND transformation is
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Table 1: Matrix elements of the output state corresponding the different cases of the input for the BS and QND
gate transformations

(HOM]| pout [HOM)

tnput BS QND gate

G2 (G2 _8)2

|1>a|1>b 4T(1 - T) 16(4_?_(;2)58)
|1>a|0>b 0 0
10)al1)n 0 0
ES

0)a/0), 0 .

active, which means it can possibly change the total number of excitations in the system (the energy
of the system). The creation of quanta by QND interaction can produce effects that resemble the
HOM interference. Although such case can be confused with the HOM interference effect, it is still
possible to analyze whether the QND interaction is capable of generating the non-classical two-
quanta superpositions going beyond any classical states serving as input to the QND interaction.
However, such analysis requires a general approach to the HOM interference beyond the simple
case with the passive BS interaction.

In this generalized description, the matrix element of the output state pou:, describing the
success probability of detection of two-photon HOM-entangled states (the HOM element), can be
introduced as [(HOM|U|p)in|?, where |¢)i, is an initial state, and U is a unitary transformation.
Here, the HOM-state is determined as (HOM| = ((2[,(0]. — (0p(2]) /v/2. Tt is well known that a
BS provides an ideal photon bunching (the HOM effect). This means that the success probability
|(HOM|Ugs|¢)in|? at the output of the BS equals one. This effect occurs when two identical quanta
enter a balanced beam splitter (T = 0.5), one in each input port (the input state |@)in = |1)a|l)1).

In order to compare the two transformations in the context of the HOM effect, let us look
at the matrix elements of the output state of each of the transformations. For simplicity, first
let us restrict the subspace of the input and assume that |p);, belongs to the space of coherent
superpositions of vacuum and one excitation of each mode, that is an arbitrary pure superposition
of [1)a|1)k, [0)al1)b,|1)al0)s and |0),|0)y. Then, to obtain the desired matrix element we need:

4G(8 — G?) 2G2
m <1|a<1|b + m <O|a<0|b-

(116)

(HOM| Ups = —sin (20) (1]a(1]y, (HOM]| Ug =

It clearly shows that the HOM matrix element provided by the inputs [0),|1), and |1),|0)1, is equal
to zero for both BS and QND transformations. Matrix element provided by |0),]|0)p input is equal
to zero in the case of a beamsplitter. However, for the QND gate this element is a function of the
gain G and equals zero only in the trivial case with G = 0. That is, by varying the gain of the
QND gate, it is impossible to make the contribution of the input vacua |0),|0)}, vanish, in order to
render these two transformations fully analogous.

For the case of a QND gate with |1),|1)p at the input, one can observe that for a certain region
of the parameter G, the probability of bunching of both excitations in one subsystem is higher than
the probability of equal redistribution of the excitations between the subsystems. Visually, it is
characterized by the presence of the maximum of (HOM|pou[HOM) (see Fig. 4(b) )approximately

equal to 0.26 for G = /11 — /105 =~ 0.87 (as compared to 1 for the BS with © = 7/4). However,
we should keep in mind that this correspondence to the case of a BS is not complete due to the
non-zero contribution from the vacuum input for the gate case that does not exist in the case of a
BS.

B.2 BS and QND transformations using quadratures.

Both Quantum Non-Demolition (QND) gate and beam splitter BS, transform quadratures of two
quantum oscillators a and b, correlating the quadratures of the two oscillators. The initial quadra-
tures r'® = (X,(0), P.(0), X1,(0), P,(0))T after transformation should relate to the final quadratures
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t T
ro"* =r = (x4, Pa, Tv, Pp)" as

r°" = T psr'™ + N, where (117)
T, 0 B, 0 VT 0 VI=T 0
o . 0 o0 7 0 VT 0 VI=T
Te=| o 0o s o ["Ds=| _g=7 0 JT 0 (118)
0 &, 0 % 0 —V1-T 0 VT

where T is the transmittance coefficient (BS transformation); &, 1, are the controllable gains of the
built QND gate, T, 1, are the transfer factors (QND transformation). N = (Mx,, Np,, Nx, , Ne, )T
describe the excess noises, thus for the ideal transformation they should be negligible (9x, p, x,.p, —
0) (and for QND transfer factors equal one (T, = 1), while the gains are of the same magnitude
but opposite sign (G = &, = —&},). Thus, gain G is the only parameter characterizing the ideal
QND gate transformation, while the BS transformation also is characterized by a single parameter
T.

B.3 Wigner function of the state

The Wigner functions (WF) can be used to calculate the HOM element. Let us demonstrate how to
obtain the WF corresponding to an arbitrary operator. First, let us remind that the wave-function
of the n-th excited level (Fock state |n)) can be derived using Hermite polynomials as:

1 T x?
Un(x) = (z[n) = \/WHH <\/§> exp (—4> ; (119)
Ho(z) =1, (120)
Hy(z) = 2z, (121)
Ho(z) =42° —2=2(22" — 1), ... (122)

The WF of the operator |¢)(1| in the s-dimensional space is as follows:

o0

Wioyo (o) = e [ dy e b Jlaivlx = 3). where @ = (a1 2.wo0) for 4 =xy.p.
o (123)
Here,
z+ ¥)?
<x+%|2>:¢\2>(3§+g)= \/ii/ﬂ ((134-2;)2—1) exp <—(+42)> (124)
<x+%|1>=¢\1>(m+g)= {1/12? (w-ﬁ-%) exp (—(xtﬁ)) (125)
(w4 210 = vy (o + ) = e (-2 (126)
x — L)2
O - ) = vl ) = g () e (127)

In the article, we work in the 4-dimensional space. Thus, for the operator A = [HOM)(HOM],
associated with the state [HOM) = (|02 21) — |22 01)) /v/2, the WF can be calculated as:

1 _i(p1yv1+poy2)
Waowm (21, p1, T2, p2) = W//dyld?ﬁ e fuom(an, 1, o, )

1 2,2, 2, 2
exp _pitpy Aty t )
1672 2

) ((pr— p2)” + (21— 22)? — 2)((p1 +p2)? + (21 + 22)* — 2).
(128)




where

fuon(a,y1,32,92) = (a1 + (w2 + LA fo2 = L)lar - 2)
1
= 5 (@1 + 21200 @2 + 21102) = (w2 + 2[122) @1+ Lll0)) ®

® ((O1ller = ) 2allwz = 2) = 2ullas = 2)(Oallws — 2

2
Lo (HEEEEEEE N (Y (0 2)) (- L) (- 2
gr P 2 ' 2T 17 279 )
Analogically, for the operator A’ = |1511)(1115]:

T — 1 Y1 2 Y2 2 x2—|—(L’1)2 +x2 (y2)2
f\11><11|( 1,Y1,T2,Y2) = 9 (33% (2) ) (x%— (*2) )eXp< 1 2 5 2 2 7
(130)

Pl +ps+ai a3
2

1
Wity 1) (@1, p1, T2, p2) = — exp < > (—14pf+af)(—1+p5+23)). (131)
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B.4 Calculation of the HOM matrix element

In order to calculate the matrix elements for an ideal (without additional noise) transformation,
it is enough to know the form of the unitary transformation U. Thus the matrix element of the
output can be calculated as:

Muom = (HOM|pous[HOM) = [(HOM|U|@)in|*. (132)

To evaluate the robustness of the QND gate against photon loss, we examine an incoherent
mixture of vacuum and single-photon states at each input port of the gate

PP = (pa 1)1 + (1= pa) [0)(O])a - (v 11) (1] + (1 = pp) [0)(0])n, (133)

where the parameter p, 1, characterizes how much vacuum has been admixed to the single-photon
state at the input ports, and calculate matrix elements for the output state of the gate. Using
Eq. (9), we can obtain the HOM matrix element of the output state of the gate:

16G2(G? — 8)2 4G

(») _ _ _ 2
(HOM|p”) [HOM) = paps TERE +(1=pa)(1 pb)(4+G2)3'

out

(134)

This matrix element is symmetrical with respect to p, and py,. Surprisingly, the independent
coherent superpositions (\/pa [1) + v/1 = pa [0))a - (v/Pb |1) + /1 —pp [0)), at the input give rise
to the same matrix element Eq. (14) as the mixture Eq. (13).

This approach is good to calculate the ME when the input state is a |n),|m),-boson state or
some combination of them. Sometimes it is more convenient to take a different approach described
below. We can use the Wigner function (WF) and the matrix elements (9|pout|¢) of the output
state can be defined as:

Mgyl = (¥lpoutlp) = (47T)2////dr Wigy (| (r) - Wous (r), (135)

where Wy (r) is the WFE of the output state, r = r°% = (24, pa, Tb, Pb) 7~ - Wie) (w|(r) corresponds
to the projector |p)(¥], e.g. to calculate Myonm we need the WF of the HOM operator:

2 2 2 2
Dy +Dpp+25+2
WHOM(r): (_ a b a b

$ ) ()4 o 2 () =) 2),
(136)
The WF approach is convenient when we know the exact WF of the input state and how

the transformation changes the quadratures of the oscillators. This approach is also suitable for

1672 F
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the case of |n)a|m)p input. We demonstrate it for the gate transformation with |1),|1), input.
Let us assume that both quantum oscillators were initially in single-boson states. Since they
are independent, the exact Wigner function of the initial state of the system can be obtained by
multiplying of the two single-photon state Wigner functions:

1 r?
Win(r) = Wal|1y (ra)Wh |1y (rp), where Wa, [j1)(ran ) = 5= (r2, —1)exp <—’b> , (137)

Tab = (xa,b » Pa,b )T- (138)

The WF of the output state of the system for the ideal gate:

1
Wout (1) = m((?b +Gpa)? + 2 — 1)(p2 + (xa — Gzp)® — 1) %
2 2 2 _ 2
X exp (_ (pb + Gpa) + Ty ;pa + (xa be) ) ) (139)

Using Eq.(135), we will obtain the same result as in Eq.( 14) for p, = pr, = 1. Both described
approaches are identical and, being applied to any ideal transformations, they give the same results.

For the non-ideal case we need to take to account the noises, which is possible using the language
of covariance matrices. A Gaussian quantum state (such as vacuum, coherent, squeezed or thermal
states) can be fully described by the first and second statistical moments, that is, a vector of means
and a covariance matrix. The Wigner function of an arbitrary Gaussian state in Rs-dimension can
be represented using the covariance matrices V as:

W) = W(r) =~ exp (5 -0V n)) (140)
r=(21,p1, ., Ts,Ps) s T = ((X1), (P1), e, (Xs), (Ps)) .

After a nonideal transformation T of the vector r, the evolution of the covariance matrices and
the WF are as follows:

Winout (r) = W(r, Vinout ) where VO = TV TE + W, (141)
1 .
[VN]ij = §<NZN] + NJNZ> (Z,j = 1, ...,S). (142)

Thus, we can use Eq.(135) and obtain the HOM matrix element of the output state for the nonideal
transformation.

However, neither single-photon nor HOM states are not Gaussian. Nevertheless, the single-
photon state can be approximated by the superposition of the thermal Wiy, (r) and vacuum Wgy (r)
states as:

Wy () = = ((n+ 1)Win(r) — Wigy (r)) n < 1. (143)

S|

Here Wy, is the Wigner function of a thermal state with mean occupation n, that is a Gaussian
state with zero means and covariance matrix equal to Vi, = (2n + 1)Iaxo.

Thermal and vacuum states are Gaussian, and, in turn, they can be represented using Eq. (140)
with r = 0 and s = 4. Thus, to describe the initial state at the input of the gate between a-oscillator
and b-oscillator we can use the following approximated WEF:

Win(r) = Waljyy (ra) W |11y (1) ~ % ((n+ 1)Win(ra) — Wy (ra)) % ((n+ 1)Win(rp) — Wig) (1)) =

1 in in in in
=3 ((n + 1)2W( th,,thy? I') - (7’L + 1)W(Vvaca,thb’ I‘) - (n + 1)W( th,,vacy? I‘) + W(V

vac,,vach ? I‘)) -

n
1 in
=3 Y (4 1)WVE, ). (144)
k,l=0,1

31



Here, the corresponding covariance matrices are

2n +1 0 0 0 1 0 0 0
. 0 2041 00| o |01 0 0
V1 1= (Cn+ 1, Vol =1y, Vi 0= 0 0 1 0l Voa = 00 2ntl 0
0 0 0 1 0 0 0 2n+1
Vet = TeVRTE + W, [Vnlis <N N; + N;N), (145)

where I is the identity matrix of size 4, k =0,1; [ =0,1 and 4,5 =1, ..., 4.
After the gate transformation of the vector r, the WF of the state at the output of the gate:

Wout(r):% S (= 4 )W ). (146)
k,1=0,1

Let us derive the approximated WF of the HOM state. Since WyowMm(r) is the WF of the state
that would be at the output of the 1:1 beamsplitter if at the input there were two single-photon
states, we use the same approach as we used to obtain Wy (r) and get

1
Wiom(r) = — > (=(n+ 1)MW1V, x), (147)
=0
1 0 10
in \/E 0 1 0 1
Vie=TouViiToo  To==1 2| ¢ 1 o (148)
0 -1 0 1

To calculate the HOM matrix element let us use the rule [dr exp{—2rTV~Ir} = 4n?/det[V]
that works for every symmetric positive-definite matrix V. Then, keeping in mind r’ (A + B)r =
rT Ar + r” Br, we can calculate the HOM matrix element as:

4 -1
Muonm = S (=)L PV V), F(A,B) = ( det[A + B])
k,l,m,d=0,1

(149)

(150)

Using the same approach we can derive the HOM element for the case of the the mixture state
input:

4
Muon = Fp2 Z (_(n 4 1))k+l+m+d . F(Vé’hvout)

k,l,m,d=0,1
4 m ou
+ogp(l=p) Y (D) RV VR)+
k,l,m=0,1
4
+p(l=p) > (=4 D)FH PV, Ve +
n
k,1,d=0,1
4 ou
+ (=0 Y ()P V). (151)
k,1=0,1

B.5 Input and output thresholds (nonclassicality borders)

We define two nonclassicality thresholds by evaluating the maximum of (HOM|pout:|HOM) over
(i) all superpositions of the coherent states at the output of the QND interaction: pout = peon =
|ctaBb) {aaPp| and (ii) before the QND interaction: pout = UQNDpCOhU(SND. For the BS interaction,
such thresholds coincide.
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If the output state poyt is classical, i.e. is a mixture of coherent states, then it turns out that
0 < (HOM|pout[HOM) < 1/e%. Thus, 1/e? is the output threshold for the HOM interference. That
is, when measuring the HOM element, if we get a value greater than 1/e2, then the measured state
for sure is a non-classical one. This threshold is shown by a thin gray dashed line in the Fig. 4(a).

To derive the input threshold, let us use two random coherent states as the input states of the
gate and calculate the HOM element for the output state pS%' = Up®PUT. We assume phase-
randomized input state which means that phases of the input coherent states are averaged. If we
examine the dependence of the (HOM|pSE|HOM) on the gain G for all the coherent states (see
Fig. 4(b)) we will obtain the area restricted by an input threshold (blue curve) that has a specific
complex shape.

To calculate the input threshold (phase randomized) let us take two random coherent states as
the inputs of the QND gate. The WF of the input state (two independent coherent states) is the
following

_ 1 1 Ter1
Wzn(r7R) - 47T2\/mexp( 2(1‘ R) V;n (I‘ R)) ‘ (152)

Here r = (xa,pa,xb,pb)T, R = (X,, Ya,Xb,Yb)T is the colomn-vector of means and V;, = I 4 is
the covariance matrix of the initial state (coherent). The vector of means changes as R — TgR.
Thus, the WF of the output state is as follows:

Woui(r,R,G) = i(r — TRV H(r — TGR)> ) (153)

1
A2 AotV P ( 2
Using this WF we can obtain the HOM element as
Muom(R, G) = (HOM|pout HOM) = (471')2 /// dr Wiom(r) - Wout (v, R, G). (154)

If, calculating the matrix elements for pc%" over all the possible coherent states averaged over

phases, then the range of possible values for the matrix elements will significantly change. Assuming
R = (X,,Ya, Xb, Yb)T = (R, c08[@a], Ra sin[p,], Ry, cos[pp], Ry sin[gpb])T we can obtain

1
Hon(Ras R0,6) = 175 [ [ dew don Muon(R,6) (155)

and investigate it over all possible R,, R}, for the certain G.

a b
0.4 T T T T T T 0.4 T T T
input threshold (input |a)a|3)y, phase randomized) —— input threshold (input |a),|3)y,, phase randomized)
-~ output threshold 1/¢? -~ output threshold 1/¢?
/2\ 03 1 o oaf — input state p =1 (|1)a|1)y) |
..... o )7 _ =
% R, = Zﬁ, RBy=0 [© P e input state p = 0.72
= T
R — R, =0,R, =0 (vacuum input|0),|0)y,) = — - input state p = 0.48
<] 5 02r
:Q‘ —- R =92 R =29 < --- input state p = 0.40
= oo =
o O [ TN s Ay
S T o
5 L2z
00 J. i e 4
0 1 2 3 4

Figure 8: a) Shape of the input coherent threshold. b) (HOM|pou:|[HOM) matrix element of the output state for
the ideal QND gate as a function of the gain G calculated for the different cases of the input: quantum input
|1)a]1)b (solid black curves), mixture input Eq. (13) (dashed black curves, dashing scale indicates parameter
p). Dashed gray line is the output threshold. Blue curve is the input thresholds (phase randomized) restricting
area that covers all the possible values of the matrix elements of the output state of the gate in the case of the
random coherent input with averaged phases.
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Figure 8(b) demonstrates (HOM|pout|[HOM) depending on the gain, assuming p, = py, = p,
compared with the case of the pure input |1),|1);. Expectedly, as the parameter p decreases, the
contribution from |1),|1)p term decreases, while the contribution from |0),|0)1, term increases. Vi-
sually, it is reflected in the gradual change of the curves’ shape — for relatively high p maximum first
decreases, then smoothly shifts to the right. Thus, the maximum of the HOM element decreases
from 0.26 at p = 1 to 1/e? at p ~ 0.7, which corresponds to the output threshold. At p ~ 0.48 it
already crosses the input threshold, so for p < 0.48 the HOM element lies below the input threshold
at the gain G ~ 0.87. For p < 0.40 the HOM element lies below the input threshold for any gain.

0.30

mixed in‘put‘,: (p\l)(l| + (i - p)‘\(l)‘(()\‘);,(})\1‘)(11 + (1‘ - ‘p)\‘(l)(‘(l\)‘], ‘

— input (|1)aB)n)

= mixed input p =1 (|1),|1)1,)
"""" mixed input p = 0.72
----- mixed input: p = 0.4

=— = mixed input p = 0 (|0),[0),)

(HOM g [HOM)

----- = input |a),|B)p (no randomization)

——— input |a),.|B)y (phase randomized)

input TMS

Figure 9: (HOM|pout|HOM) matrix element of the output state for the ideal QND gate as a function of the
gain G calculated for the different cases of the input: the vacuum input |0).|0)s(black dashed), the state with
one-boson at the first input and coherent at the second |1).|8), (red), two independent coherent states at
the input |a)a|B)b (blue dot-dashed), phase averaged coherent states at the input |a)a|8)b (blue), two-mode
squeezed state TMS (green). The curve of the vacuum input depends only on the gain, all other inputs depend
on many parameters (phases, displacements, squeezings etc), so their curves are the highest possible values
(thresholds) of the HOM element calculated over all their parameters.
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