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Pulsed atom-mechanical quantum non-demolition gate

A. D. Manukhova@®'*, A. A. Rakhubovsky @' and R. Filip'

Hybridization of quantum science and technology crucially depends on quantum gates between various physical systems. The
different platforms have different fundamental physics and, therefore, diverse advantages in various applications. Many
applications require nearly ideal quantum gates with variable large interaction gain and sufficient entangling power. Moreover,
pulsed gates are advantageous for fast quantum circuits. For quantum systems with continuous variables, the quantum non-
demolition (QND) gate is the most basic. It is an entangling gate that simultaneously keeps a variable of the interacting system
unchanged. This feature is useful for quantum circuits from quantum sensing to continuous variable quantum computing.
Currently, atomic ensembles storing quantum states of radiation and mechanical oscillators transducing them are two major but
very different continuous-variable matter platforms. We propose a high-quality continuous-variable QND gate between an atomic
ensemble and a mechanical oscillator in the separated optical cavities connected by propagating optical pulses. We demonstrate
that squeezing of light pulses, homodyne measurement, and optimized feedforward control used to build the gate are sufficient to
reach an interaction gain up to 50 with nearly ideal entangling power.
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INTRODUCTION

Quantum matter systems hybridized using optical buses and
communication lines are among the most promising and
challenging directions in quantum technology.'™ The general
idea behind this development is to combine the advantages and
capabilities of individual components from different physical
platforms into one hybrid system. Thanks to the advantageous
rules of quantum physics, a quantum state can be freely
transferred between very different and spatially separated
physical platforms. Therefore, the hybrid systems can unify
possibilities to prepare, transfer, store, operate, transduce, and
measure quantum states of complex systems. A particular
hybridization can combine atoms used to store quantum states
with mechanical oscillators used to transduce them to radiation
and other matter systems. Thus, quantum hybrid systems
composed of a mechanical oscillator coupled to an atom-like
quantum object, such as ensembles of atoms or single ions as well
as semiconductor quantum dots and superconducting circuits, are
of special interest.®

The first milestone is still the creation of entanglement between
collective spin variables of an atomic ensemble and a nanome-
chanical resonator.” Right now this direction is rapidly developing.
Establishing quantum entanglement between atoms and another
object or just between different atomic ensembles is the most
common task close to experimental realization,®'" but solid-state
systems are becoming competitive.'> Works on hybrid mechanics
include a wide range of studies like coupling with other systems,
e.g. quantum dots'? or nitrogen-vacancy defects,' or creation of
hybrid circuit cavity quantum electrodynamics.'® Research in the
domain of hybrid optomechanics with atoms mostly aims at
enhancing the control over the mechanics by interfacing it to a
well-controlled system,'® in particular, cooling,'”'® entangling,'®?°
sensing,?"?? and squeezing®® the mechanical motion. Mechanical
oscillators were also successfully used to enhance spin sensing.**
Coupling atoms to mechanics is also of great experimental
interest because of its direct application in quantum sensing.>>%¢

Most research of hybrid systems is focused on such systems
within a single resonator or cavity.’~>° Such localized systems are
good for the purposes of quantum computing, however to use
them in a versatile manner in circuits and at least over a short
distance, focusing on the gates between two spatially separated
objects is necessary.*” The distance between objects greatly limits
the choice of a coupling mediator. A magnetic field provides
coupling only over short distances;*® using the microwave range
of the electromagnetic field allows to increase this distance,’ but
to go beyond the range of a single cryogenic environment light is
the best candidate.®

As a resource to reduce noise in stationary hybrid systems,
steady-state entanglement in hybrid atom-optomechanical sys-
tems and different coupling schemes is sufficient.'®*'3* How-
ever, hybrid quantum processing requires specific types of pulsed-
controlled hybrid gates which is the challenging next step. Such
gates will operate on quantum states of matter resolved in time,
which is necessary to process quantum information. In all-optical
experiments, such steps have already been taken.>**¢ Therefore,
squeezing of light in properly temporally shaped optical pulses is
already available.®’~*° In addition, techniques to change the time
profile of squeezed light while maintaining the squeezing
magnitude are being developed.*°

After establishing quantum gates between atoms,'"*' hybrid
gates with other platforms become the next target. In the future,
the possibility to achieve a fundamentally different type of
interaction between atoms and mechanics is much more inspiring.
A number of recent papers proposed and studied nonlinearity in
mechanical oscillators**~* and, therefore, the spelling of the latter
with atoms is promising. It can bring new continuous-variable
nonlinearities to atomic systems, improve their applications or
stimulate new ones.

We, thereby, propose an entangling pulsed quantum non-
demolition (QND)-type gate between atoms at room-temperature
and optically pre-cooled mechanical oscillator. We use squeezed
light in a temporally matched pulse and feed-forward control of
atomic states®’**® to reach low-noise performance of the gate. We
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Fig. 1 QND gate between an atomic ensemble and a mechanical oscillator. A squeezed quantum light pulse with a rectangular temporal
profile first passes the atomic ensemble in a cavity and then the optomechanical cavity via circulators C;, and then goes to the homodyne
detector (LO—rectangularly shaped local oscillator). Within the cavities the optical pulse is coupled to atoms and mechanics, respectively, via
QND interactions enabled by strong classical pumps. The homodyne detection data are used to control the optical feedforward procedure
after the detection to shift the atomic quadratures. Canonical variables {Xa,P,}, {Xm,Pm}, {Xc,pc}, and {x.,p.} are the quadratures of the
collective atomic spin, mechanical oscillator, and intracavity modes, respectively; non-canonical variables {x", p"}, {£°**, p°*'}, {&™,p""}, and
{%°" p"°"} are the quadratures of the light field outside the cavities in free space at the corresponding parts of the scheme. The homodyne
measurement and magnetic feedforward control via magnetic field phase shifter (MIFPS) are optimized to perform the QND interaction and

atomic
ensemble

'MFPS |

the squeezed light is used to achieve large entangling power.

demonstrate that for the parameters within experimental reach,*~>2
it is possible to obtain gain values for the QND gate taking values
from 1 to 50 using light with squeezing below 15 dB. Entangle-
ment, evaluated in terms of logarithmic negativity, ranges from
zero up to one. For the first experimental verification, a gate with
these parameters can be obtained even with high-energy losses in
excess of 50%.

Evaluation of the properties of the interaction in the form of a
gate allows to consider sequences of such gates forming
complicated linear entangling circuits between atoms and
mechanics. Using mechanics as transducers between different
optical/microwave wavelengths we can build entangling gates
between very different atomic and solid state systems otherwise
not interacting at all. Moreover, development of an efficient gate
between atoms and mechanics in distant cavities will pave the
way for the possibility to introduce nonlinearities provided by a
mechanical oscillator with atoms.**

RESULTS

Quantum hybrid QND gate

The basic principle to realize the QND gate between an atomic
ensemble and a mechanical oscillator is shown in Fig. 1. It uses a
topology suited to building QND gates based on squeezed light,
where the feedforward control is applied only to atoms as in ref. >
A squeezed quantum field successively passes through the atomic
ensemble, located in the cavity with optical decay rate k,, and the
optomechanical cavity with optical decay rate k,, accompanied by
strong classical driving. Both driving fields are the pulses with
rectangular time profiles, of duration T and have a certain phase.
To get an effective gate, it is important to guarantee a good
interaction between the light, atomic ensemble, and mechanical
mode. In order to ensure good matching of the driving pulses with
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cavities, we assume the pulses to be long enough, such that
KamT > 1,50 the bandwidths of the pulses properly fit inside the
cavities’ linewidths. We assume both intracavity interactions are
QND-type, thus light exchanges its quantum state with both
atoms and mechanics the same way. QND interactions®® are
simultaneously the most common in both atomic ensembles>>>¢
and mechanical oscillators.>” The interactions are characterized by
the coupling rates G, for the light-atom, and g, for the light-
mechanics, respectively. Note that these rates are controllable
since they depend on the photon numbers in the respective
cavities. When the condition k,mT > 1 is met, a rectangular
drive pulse gives rise to a time-independent coupling strength
which, in turn, allows convenient analytical treatment of the
equations of motion. Otherwise, one has to explicitly assume time-
dependent coupling. In a strict sense, the optical cavity for the
atomic cloud is not mandatory and, using sufficient optical density
of the atomic ensembile, it is possible to get a sufficiently strong
interaction between the light and the atoms in a single pass.
Nevertheless, the use of the cavity allows to increase the coupling
strength.>'°87¢° Also the process can be managed by changing
the shape of the pump.®"*? Note that the time profiles of the light
fields are important and can be considered as an additional
degree of freedom that can later be used to improve the quality of
the gate, expanding the range of different sources of squeezed
light that can be used effectively. However, in this article we
restrict ourselves to the case of rectangular profiles (see Fig. 1),
without performing additional field optimization tasks, since
doing so will complicate the problem, without further illuminating
the purpose of the article.

After the interactions we detect a quadrature of light in the
same temporal mode with the rectangular profile and apply a
feedforward procedure to shift the atomic quadratures. An
opposite ordering, when the light first interacts with mechanics
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and only then with atoms, is possible. We choose the atomic
ensemble to be the first just because it is technically easier to
apply feedforward to the atoms.*®%376

To describe the atomic subsystem we consider the state of an
ensemble of atoms at room temperature, each having two stable
ground states. We assume a strong magnetic driving along the
Z-axis for the atomic ensemble that allows us to apply the
Holstein—Primakoff transformatlon and consider normalized
collective spins {X,,P,} as very long-lived canonical atomic
variables.”>>®” This is a good approximation easily achieved in
current experiments.”*® To describe the optomechanical part of
the system we use quadratures {Xm,Pm} that refer to the
dimensionless position and momentum of the mechanical
oscillator. Differently to the atomic ensemble the mechanical
mode is connected to a relatively hot thermal bath.

Thus, canonical variables {X,,P,} and {Xm.Pn} are the
quadratures of the atomic and mechanical oscillators, respectively,
and obey the following commutation relations:

(X, Pe] =i, k=a,m. 1
The light field operators obey different commutation relations

[Aln out ) ~in, 0ut<t )] — [A!In 0ut<t) Al out<r )] — I(S(t _ t/), [)A(Cvi’c] — [)A(/c”b/c] =i
)

Here {x™°" p"™°} and {X™°", 5™} correspond to the input/
output ﬁelds whlle {X¢, P} and {xc,pc} to the intracavity fields
(see Fig. 1).

As we consider the gate between two distant systems that may
not be in the same cryostat, we take into account optical loss for
the light that is equivalent to admixture of a vacuum mode a"*“(t)
during the propagation between the systems. This admixture can
be quantitatively described by a value n that characterizes the
efficiency of the atom-mechanical coupling process with respect
to the loss (n = 1 corresponds to the lossless case). Note that the
phenomenological description captures all the mechanisms of
pure optical loss, such as scattering, mode mismatch, etc.

After the interactions are complete and the feedforward has
been applied, we get the quantum gate between atomic and
mechanical oscillators described by the following input-output
relations (for the details see Section IV and Supplementary Note I):

Xa(T) = TaXa(0) + ®aXim (0) + Ny, P.(1) = T.P,(0) + 9, (3)

Xn(1) = ToXm(0) + Ry, Pn(1) = TnPm(0) + GPa(0) + Np,,  (4)

where ®, , are the controllable gains of the built QND gate, T,

are the transfer factors and 9ty, . p,. describe the excess noises

that reduce the quality of the gate. The transformation (3) and (4)

preserves the commutation relations and is, therefore, physical.
Expressions for the transfer factors are given as

Yar

To—e P 1, Tn—eFal, (5)

where y, and y,, are the atomic and mechanical decay rates. In an
experiment, both y, and y,, are negligible,%*’° the transfer factors
T, m are usually close to one (the ideal values) for interaction
durations T that are not too long. In contrast to these factors, the
controllable gains ®,, can differ a lot depending on certain
parameters of the system.

Expressions for the gains can be derived as

Ga= V1 KiKy, G = —/1 KiKy, ©)

where K; and K, are the atomic and optomechanical interaction
gains that are proportional to the coupling rates G and g,
respectively, and depend on the corresponding cavity decay rates
K, and kn,. They are complicated functions of the interaction, loss,
and noise parameters, so we only write them in Supplementary
Note | and the same is true for the noise expressions 9x, p. .
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The ideal QND gate is characterized by having transfer factors
all close to one, equal QND gains and negligible noises. A basic
milestone is the QND sum gate with the QND gain
®, = G, = 1.3 Practically, even if the transfer factors are not
exactly unity but still are very close to it, we can say that relations
Egs. (3) and (4) may approach a desired QND gate well enough.
For an established unity-transfer QND gate, when all the
parameters are fixed, the most important issue is how well the
ideal gate can be approached. Simultaneously, it gives a way to
compare the gate to its ideal counterpart with the same gain.

The values of the QND gains have a significant effect on the
entanglement between atoms and mechanics. Entangling power
is important for many applications and is therefore our figure
of merit.

Entangling power of the hybrid QND gate

After we approach the unity-transfer QND gate, we examine the
quality of the built QND gate in two cases: the full solution,
including the intracavity fields, and its adiabatic approximation,
eliminating the intracavity fields. The adiabatic regime allows for a
better quality of the interaction between the atoms and the
mechanics thanks to the fewer number of the intermediate
interactions with cavity fields. The adiabatic approximation,
therefore, allows evaluating the possible limits of performance
of the proposed protocol. Equations (3) and (4) relate the quantum
state of the atoms and mechanics after the interactions with their
initial states and the noises. The interaction is linear in the
operators and is fully contained in the first and second moments,
thus we can separately use the vector of means and the
covariance matrix to completely describe both input and output
quantum states. As a single value to measure the entangling
power of the QND hybrid operation we use the logarithmic
negativity of the system comprised of atoms and mechanics.”* We
assume that initially the atomic mode and all the light fields
(except the squeezed input signal) are in the vacuum state, while
the mechanics is in a thermal state with average phonon number
no. The system has several parameters affecting the process: the
initial squeezing of the signal pulse S (external parameter), the
energy loss n, optical damping rates k, and k,, of the cavities,
the initial occupation ng defining how well the mechanical
oscillator has been cooled initially, the mechanical damping
coefficient y,,, that shows how good the mechanics is isolated from
the thermal bath with average phonon number ny,. The two latter
parameters are combined in the reheating rate 'y, = y,, (N + 1/2).
All these parameters affect the gate quality differently.

For given y,,, m and optical loss n we can optimize the
squeezing S to reach the largest entangling power for different no.
The values of ng achievable by auxiliary cooling are then able to
test the possibility to observe thermal entanglement between
atoms and mechanics.”*’® To ensure good temporal mode-
matching, we consider only long pulses with k; mT > 1. In the
adiabatic case of the optomechanical interaction, when the optical
mode reacts to any changes instantaneously (km > Y, 7 ),
while the coupling constants are much smaller than the linewidth
of the cavity (km > g,G) and the interaction is faster than the
rethermalization rate (1 <« Fr;’ ), Egs. (3) and (4) for the QND gate
take the form

Xa(T) = Xa(0) + /A KiKaXem(0) — (1 — n)K;SX

+Kiv/n(1—n) X' i)a(r):'[)a(o)v

Pn(T) = P (0) — /1 K1KyP4(0)

—VA KoY — /T Kop™,

Xm(T) = )A(m(o%
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Fig.2 Logarithmic negativity for adiabatic and full solutions as a function of squeezing S. a Adiabatic regime of parameters: dashed curves
(adiabatic solution) are close to the solid ones (full solution). Here, Iy, = 10Ky, Vyy = 10Ky, g = G = 0.085Ky, Tkm = 100. Interaction
gains K; ; are given by Eq. (9) and calculated by 7, g, and G assuming k, = 2kn, (here, K; = 0.85,K; = 1.20), ®, , are defined by Eq. (6). For the
lossless case the logarithmic negativity saturates, while for the case of any loss it has a maximum. For the adiabatic case the entangling power
(with low population and high efficiency) always has a positive value even with no squeezing of the light pulse. b Full solution calculated

using non-adiabatic parameters [, = 0.01km, TKm = 50, Y,

= 10""Km, Ka = 2Km, No = 0, G = g. Here, thick curves correspond to the lossless

case (n = 1), thin ones correspond to the case of 10% loss (n = 0.9). In contrast to a squeezing of the pulse can be insufficient to reach positive
entangling power even for ng = 0 with n = 1. In both these cases logarithmic negativity as a function of squeezing with n < 1 has a maximum

that depends on the efficiency and initial population.

where the interaction gains K; , are defined as

2 2
Ki=G/~  Ko=gy/ ©)
Ka Km
while canonical quadratures sX°, 57 Y’ of the S|gnal and X%, p"*°
of the admixed vacuum mode are defined by (X°, ¥°, %%, p*) =

\/fo dt (S7'%"(t), Sp™ (1), X (t), p"*“(t)). These definitions show

our ch0|ce of rectangular temporal profiles for the relevant optical
modes. The rectangular profiles naturally appear in the solutions
of the intracavity equations of motion for a QND-type interaction
with time-independent coupling rates (see Supplementary Note IB
and IQ). If we chose a different driving profile, it would require
adjusting the temporal profiles of the fields.

The dependence of the logarithmic negativity on the para-
meters in the adiabatic regime is similar to that of ref. ”” where the
coupling of two distant mechanical oscillators was considered.
Figure 2a demonstrates a good match between the full solution
and its adiabatic approximation if the interaction parameters
satisfy the requirements for the adiabatic case. For any fixed pair
of the interaction gains K; and K5, initial mechanical occupation
no, and ideal efficiency of the process n =1 the entanglement
between atoms and mechanics as a function of signal squeezing S
increases with S and has a clearly seen upper boundary (that in all
cases is reached at ~S = 15 dB). In the case of any energy loss the
logarithmic negativity has a maximum and increasing the
squeezing above the optimal value will decrease the negativity.
But in both these cases it is possible to reach sufficient entangling
power even with zero squeezing of the light pulse. This might be
advantageous for a first proof-of-principle demonstration. Note
that the logarithmic negativity appears to be asymmetric with
respect to the interaction gains K; and K. This is useful because if
one gain is lower we can still compensate it by the other, which
may be easier to enhance. The asymmetry becomes insignificant if
the signal squeezing is good (S > 1) and the efficiency of the
process is high (n — 1). For the ideal case with n =1, one can
obtain a simple limiting expression:

lim E,(S) =

S—o0

1
5|n <1 +2n0(1 + no) + 2KIK3(1 + 2ny)

72\/(n§ + K2K2 (1 +2n0)) (1 + no)® + KZK2(1 + 2n0))>.
Note that for all the possible pairs K; and K; the shapes of the

logarithmic negativity as a function of squeezing differ slightly
(saturate for n = 1 and have maxima for n < 1). Additionally it can
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be observed that the higher these parameters, the higher the
entangling power. If we restrict ourselves to the case of equal
interaction gains K; = K; = K, the logarithmic negativity as a
function of K in a case of any fixed ng, S and n < 1 has an upper
boundary, but if the process has no losses (n = 1) there is no
clearly seen plateau. The maximum height of the plateau is
determined (in descending order of significance) by the efficiency
of the process, the initial population, and the degree of signal
squeezing (see Supplementary Note ll). If there are no losses in the
process (n = 1) or initially the mechanics has been cooled ideally
(np = 0) the adiabatic solution will always show positive
logarithmic negativity E,. But if neither condition is met (n < 1
and ng >0), an area of interaction gains that provides no
entanglement in the system appears.

The adiabatic solution also demonstrates that if the mechanics
was not cooled ideally but loss is small a sufficiently high gain can
compensate for any no. However, the converse is not true—the
loss defines the highest possible value of the logarithmic
negativity that can be reached by increasing the gains.

In the adiabatic case the most important parameters are the
efficiency of the entire process and the initial mechanical
occupation. In accordance with the previous statement, there is
entanglement for any n > 0 provided that K is larger than the
threshold for a given ng. Negativity at zero initial occupation
depends on a certain value of the gain, but K has no strong effect
on the shape of the dependence of negativity on ng. Note that for
any relatively high value of the gain there is a region of small
initial occupations ng within which the logarithmic negativity does
not change: the higher K, the larger the region (outside of this
area negativity gradually decreases to zero).

So to sum up, in the adiabatic regime the higher the interaction
gains K; and K, (the higher the coupling constants G and g), the
better the gate.

The full solution demonstrates more interesting and less
straightforward behavior. Figure 2b demonstrates the full solution
calculated with parameters that definitely do not satisfy the
requirements for the adiabatic case (non-adiabatic parameters).
For convenience we investigate the case of equal coupling
constants (g = G). We see that even for these parameters the
generated QND gate has gains ®, , high enough that they lead to
high values for the logarithmic negativity with T, n very close to
one. Here, in contradistinction to the adiabatic solution simply
increasing the coupling constants g and G will not lead to an
increase of the negativity. This is illustrated in Fig. 2b, where the
blue curves that correspond to g = G = 0.7k, lie below the black
ones with lower values of the coupling constants g = G = 0.4Ky,.
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Fig. 3 Logarithmic negativity as a function of efficiency. a The squeezing Sop:(n) is optimized for each value of the efficiency n. The inset
illustrates the dependence of the optimized value of squeezing on the efficiency n (the shape of this curve does not differ a lot for any case,
but for the adiabatic parameters the increase is much sharper). b Limited role of the optimization. Solid curves assume optimized squeezing
Sopt(n) and the dotted ones illustrate the case with fixed values Sqpc(n = 0.999), while the dotdashed curve shows the case with Sqpc(n = 0.9)
for ng = 0. As the efficiency n approaches the lossless case, Sopt(n — 1) — oo and the dotted lines become vertical. Dashed lines (in the inset)
are limiting expressions (S — oo) of the expansions of the logarithmic negativity to first order around S near n = 1 for np = 0, 1 that can be
analytically obtained only for the adiabatic approximation. Near n = 1 these lines lie very close to the logarithmic negativity calculated with
optimized squeezing for the adiabatic parameters. The thickness of the curves shows different initial occupations (ng = 0, 1, 10). The colors
of the curves mark the case: purple curves correspond to the adiabatic case with parameters I, = 10k, Tkm = 100, G = g = 0.085k,,
black and blue, for the non-adiabatic one with ', = 0.01k, G = g = 0.4k,, moreover, Tk, = 50 for the black and 1k, = 20 for the blue.

Parameters used: y,, = 10 >k, Ka = 2Knm.
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Fig. 4 Robustness of the atom-mechanical entanglement. a Logarithmic negativity for the full (solid curves) solution depending on the
coupling (assuming G = g). Here, n = 1, y,, = 10k, S = 5 dB, mechanical rethermalization rate I';, = 10 3k, initial mechanical occupation
no = 0 for the different values of Tkn,. Dashed curves of the corresponding colors demonstrate the adiabatic solution with these parameters.
b Logarithmic negativity for the full solution depending on a mechanical rethermalization rate I, calculated for two cases of coupling rates using
different initial mechanical occupation no. Here, n = 1, y,, = 10>k, S = 5 dB, and Tk, = 100. The inset is the y-scale zoom of the main figure.

Besides, the higher these coupling constants the larger the
decrease of entanglement caused by the loss. For the blue pair of
curves, which correspond to the coupling constants 0.7k, the
difference between thick (n = 1, lossless case) and thin (n = 0.9)
curves is significantly larger than for the red pair corresponding to
the lower value of the coupling constant 0.1ky,.

It is important that no matter which range of parameters we
work in, the maximum of the logarithmic negativity as a function
of squeezing varies greatly depending on the efficiency and the
initial occupation of the mechanical mode. Therefore, for a
particular set of parameters it always makes sense to carry out an
optimization of the squeezing value for any certain efficiency. This
approach can significantly increase the entangling power and
allows to get high values of the negativity even in case of large
energy losses (see Fig. 3a, b). Optimal squeezing as a function of
the efficiency in all the cases, independent of whether or not the
parameters satisfy the requirements for the adiabatic case,
increases and goes to infinity for 100% efficiency (see the inset
box in Fig. 3a). As the efficiency approaches unity optimal
squeezing can take arbitrary large values and is then limited by its
availability (a recent record is 15 dB’®). In other words, in the case
of any energy loss (realistic case) one does not need ideal infinite
squeezing, and the bigger the loss, the lower the optimal
squeezing. For the adiabatic approximation at any fixed K, and
nyg it is possible to analytically obtain the limiting expression of the

Published in partnership with The University of New South Wales

expansion of the logarithmic negativity to first order around S
near n = 1 (see Supplementary Note Ill). This expression appears
to be very close to the logarithmic negativity with optimized
squeezing (see inset in Fig. 3b).

DISCUSSION

As shown in the previous section, unlike the adiabatic solution the
full one shows that even in the lossless case (n = 1), with certain
parameters of the system, the value of signal squeezing may be
not sufficient to obtain the desired positive entangling power.
And the higher the coupling constants g and G the higher the
threshold for the signal squeezing. Besides, increasing these
coupling constants would not lead to monotonically increasing
the negativity in contrast to the adiabatic case. This is demon-
strated for the red, black and blue curves in Fig. 2b.

Let us show how the logarithmic negativity depends on the
coupling constants g and G (see Fig. 4). Negativity for the adiabatic
solution keeps growing with increase of these constants. In
contrast, the full solution shows that with increasing of the
coupling, negativity first increases, reaches the maximum and
then slowly decreases to zero due to the interaction of the
mechanical resonator with thermal bath. This decrease is mostly
caused by enhancing of the part of 9y, which contains thermal
noise, therefore by increasing the coupling rates we increase not

npj Quantum Information (2020) 4



np)

A.D. Manukhova et al.

only the coupling strength but also the noise. The decrease of the
pulse duration causes the rapid shift of the peak. Figure 4b
demonstrates how the entanglement decreases as the reheating
rate increases: the bigger the rates of the QND interaction, the
sharper the decrease. Precooling the mechanical oscillator
(decreasing no while keeping I, constant), allows to increase
the amount of generated entanglement, but has no impact on the
threshold value of 'y, at which the entanglement vanishes. Note
that there is an area with high rethermalization rate 'y, where
stronger coupling results in worse entanglement compared with
the weaker one. That means in some cases with certain given ng
and T, it is better to decrease the coupling rates instead of
increasing them to get the better gate. This is explained by the
fact that high values of coupling parameters impose extremely
stringent requirements on the initial conditions and give good
values for the entangling power only with almost zero initial
population of the mechanical mode and the heating rate.
Reducing the coupling, we relax these requirements, which
means that it will be possible to obtain satisfactory entanglement
even with a substantial population of the mechanical mode and
its’ heating.

In this work, we proposed a hybrid pulsed QND gate based on
a spatially separated atomic cloud and optomechanical cavity,
both at room temperature, connected by squeezed light. We
investigated the entangling power of the built gate using
parameters close to the state-of-the-art experimental values and
discussed experimental requirements and further optimization of
such a gate. We showed that this entangling power appears to
be very different depending on the area of the selected
parameters, specifically whether or not these parameters satisfy
the requirements for the adiabatic regime of operation. We also
demonstrated that although the requirements for the gate are
quite stringent, they are physically feasible and it is possible to
develop such a gate in a real experiment with atoms and
levitating particles. Our calculations showed that for the
adiabatic regime with low population ngy logarithmic negativity
is always positive even in the case of zero squeezing of the light
pulse, that is not true for the non-adiabatic regime. Besides, for
any value of efficiency below one, i.e. for an experimentally
attainable parameter, the logarithmic negativity as a function of
squeezing has a maximum, i.e. there is an optimal squeezing
value of the light pulse. However, the optimizing procedure for
squeezing is advantageous only for relatively low efficiency. For
high efficiencies close to unity, the values of optimal squeezing
begin to differ greatly (e.g. S(n=0.99) < S(n =0.999) and
S(n=1) — ), while the profit is small (see the inset in Fig.
3a and Fig. 2c of the Supplementary Note Ill) making
optimization unnecessary. Moreover, due to the strong differ-
ence between the optimal values, it becomes critical to correctly
estimate the losses. Thus, for high efficiencies, using the value of
squeezing that is optimal for an overestimated value of n can
corrupt the performance of the protocol. For example using the
value of the squeezing optimal for n = 0.99 in a protocol with a
lower actual value of n = 0.9 results in less entanglement than
using the squeezing optimal for n =09 (see Fig. 3b and
Supplementary Note lll). This effect is less pronounced for the
region of parameters that satisfy the requirements for the
adiabatic case; for the non-adiabatic case it can be traced more
clearly. This statement is a very positive point because it
indicates that there is no need for light sources with ideal, and
therefore unattainable, squeezing. Those sources that experi-
ment currently has access to (with squeezing of ~15 dB) give a
logarithmic negativity close to the theoretical maximum.

Another important parameter is the rethermalization rate of the
mechanical oscillator. Cooling of the thermal bath is extremely
important in order to obtain significant entanglement with a non-
zero occupancy of the mechanical mode of 10—15 phonons
achievable in a real experiment.”® Calculations show that in our
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case it is possible to obtain a significant value of the logarithmic
negativity for the rethermalization rate not higher than 0.01 of the
optical damping rate kp,.

In spite of the fact that the proposed gate is linear, its
implementation and thorough research are a necessary step
towards the next goal—the development of a non-linear gate
between a levitating particle and a collective atomic spin. Classical
nonlinear dynamics of optically trapped levitating particles has
already been experimentally observed.**#° Recently, cooling of
levitating particles sufficiently close to ground state has been
achieved using coherent scattering.>>’® Imprinting a nonlinearity
created in one physical system onto another is an interesting and
promising problem and the development of such a gate will open
up new opportunities in quantum technology.

METHODS

In this section, we apply the Heisenberg-Langevin formalism to evaluate
the QND gate between the atomic and mechanical systems. To describe
the evolution of the field and material variables we solve, with relevant
initial conditions, two sets of Heisenberg-Langevin equations: the first
describes the evolution during the light-atom interaction and the second
during the optomechanical interaction. The light at the input of the
optomechanical cavity is, up to loss, the light at the output of the atomic
cavity. After both interactions we detect the amplified quadrature of the
light via homodyne detection and apply feedforward to shift the
quadratures of the atomic variables.

For the first interaction, which is intended to entangle the quadratures
of the signal pulse with the atomic ones, the squeezed light with
quadratures {x"(t), p" (t)} prepared in a pulse with a rectangular temporal
envelope of duration T enters the atomic cavity, so here we have to use the
input-output relations to describe the relation between input and output
pulses {X™°"(t), ™" ()} (fields in a free space) and intracavity field
{Xc, P} that interacts with the atoms.

To describe light-atom interaction we use an effective QND-type
Hamiltonian Hj, ~ —hGP,%., where, G is the coupling rate defining the
strength of the interaction, and commutation relations Egs. (1) and (2)
hold. We derive Heisenberg-Langevin equations that describe the
evolution of the field {X,p.} and material variables {X,,P,} during the
interaction time. Typically in an experiment k, > y,/2 holds and the life
time of the atoms can reach 30 ms,>' so we can ignore the decay and
assume y, = 0 (that further will result in T, = 1). The conditionk, > Gis
commonly satisfied as well, which means that the optical mode in the
cavity can respond to any changes in the input mode or the atomic mode
instantaneously (this amounts to putting X. = p. = 0, so-called adiabatic
approximation). Thus, the system of equations is as follows:

0 = —KaXc(t) + /265" (1), (10)
0 = —KaP(t) + /2kap" (1) + GP,(t (11)

Xalt) = —GR (1), (12)

léa(t) =0. 13

We solve it and use the result as the initial condition for the next
interaction. After the first interaction, when the state of the light became
entangled with the atomic oscillator, the signal leaves the atomic cavity
and at the output it can be derived using the following input-output
relations

= /2k,Qc(t) — Q" (t)

At this stage we also take into account all the loss as

O/in(l’) o out + F Qvac
that formally describes all the energy losses that occur during the coupling
process.

Then the pulse with quadratures {X""( (t)} enters the optomecha-
nical cavity, where the intracavity ﬁeld {xc,pc} interacts with the
mechanics. Via the effective QND-type Hamiltonian Him =~ ngpc, where
g is the coupling rate, and the commutation relations Egs. (1) and (2) we
obtain another set of Heisenberg-Langevin equations describing the

Q=%xp (14)

Q=xp (15)

/m ’\/In
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evolution of the field and mechanical variables during the optomechanical
interaction as

X() = —KmXL(t) + V2KmX™ (t) 4+ gXm (£), (16)
PL(t) = —kmPe(t) + V2KmP™ (1), (17)
Xon(6) = =22 Kn (0) + b (18)
Po(t) = =T (1) + Y€ " = g0, (19

We solve this set using the initial conditions specified earlier and the result
of the solution of the previous set. Note, that for the optomechanical part

the thermal Brownian noise (EXW‘PM) is characterized by the correlation
relation (€™ ()& (¢) + € ()€™ (1)) = (204 + 1)8(t — ') and
defines the rethermalization rate 'y, =y, (nw + 1/2). To describe the

X-quadrature of the light field at the output of the optomechanical cavity
we have to use once more the input-output relations:

Q) = 2L (1) — Q" (1),

After the optomechanical interaction the light leaves the cavity and arrives
at the homodyne detector.

The homodyne profile has to be optimized to enhance the transfer of
quantum information between mechanics and atoms, but for the relevant
regime of parameters it is sufficient to use the rectangular one. So for
further convenience we assume the case of rectangular profiles and the
canonical X-quadrature of the output light can be derived as

T
X/out — \/lf/o dt )A(/out(t). (21)

Q=x%p. (20)

We assume that t_he input light initially has a Y-quadrature squeezed mode
which means {X",¥"} — {Sf(o, S"?O}, where the parameter S describes

the squeezing and {ﬁ07?0} describe the vacuum.
After detection we have to make a shift of the atomic oscillator by the
feedforward procedure with K coefficient:

Xa(1) — —K X" 4+ X5(0) + KX (22)

We chose K¢ = \/n K; to fully compensate for the asymmetry caused by
the loss. After all these steps we get Egs. (3) and (4) that fully describe the
relations between quadratures of the atomic and mechanical oscillators
(for more details see Supplementary Note I). Using the relations Egs. (3)
and (4) we can evaluate the covariance matrix of the bipartite state of the
atoms and mechanics, from which, in turn, we compute the logarithmic
negativity.
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