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Transfer of non-Gaussian quantum states of mechanical oscillator to light
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Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The
non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator
isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states
of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only
basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne
detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian
states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers,
including states necessary for the implementation of an important cubic phase gate.
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I. INTRODUCTION

During the last three decades, quantum optics tested a
number of nonclassical physical phenomena with continuous
variables of light. This was possible thanks to the development
of quantum features of nonlinear optics [1]. It mainly enabled a
deep examination of quadratic nonlinear effects at the quantum
level. The quadratic nonlinearities are generically capable
of producing squeezed states of light [2]. They have direct
experimental applications in quantum metrology [3], quantum
cryptography [4], and quantum computation [5]. Using the
squeezed states from optical parametric oscillators (OPOs)
as available offline resources [6], it is possible to induce
any quadratic nonlinearities on any quantum state of light
[7,8]. They have been extensively experimentally investigated
[9–13]. They exploit the achievements of quantum optics
during the last decade, mainly the high quality and stability of
linear optical interferometry, the high efficiency and low noise
of homodyne detection, and the high speed and precision of
the electro-optical feedforward control of light [6].

However, the quadratic nonlinearities provided by OPOs are
already not sufficient for future applications. A highly required
non-Gaussian quantum state is a state from a cubic nonlinear-
ity. It is a key resource for deterministic implementation of
a basic cubic phase gate [14–17]. This cubic gate is needed
to finally complete the set of existing linear and quadratic
quantum operations. This complete set is then in principle
sufficient to create any quantum nonlinearity. Recently, the
approximate state from a weak cubic nonlinearity has been
conditionally prepared by all-optical approach [18,19]. How-
ever, this method cannot be deterministic and does not allow
one to prepare states from stronger cubic nonlinearities.

Currently developing quantum optomechanics [20–22] is
a very good candidate to surpass this limitation. A quantum-
mechanical oscillator represented by a levitating particle can
evolve under the influence of an external highly nonlinear
potential, for example the cubic potential, in optical tweezers
[23–27]. The mechanical motion can shortly feel a strong
nonlinear potential and, therefore, it can deterministically gen-
erate a highly non-Gaussian quantum state of the mechanical
oscillator. The optomechanical experiments with levitating
particles are currently progressing in this direction; however,
the experimental setup for such a generator still remains open

as a future target. At the classical level, few steps towards such
possibilities have been experimentally tested inside the optical
tweezers [28–33].

A quantum-mechanical oscillator initially in a ground state
subjected to a nonlinear potential higher than quadratic evolves
to a quantum non-Gaussian state. These states exhibit an
important structure of negative areas of Wigner function in
phase space [34–37]. However, that negativity is very sensitive
to both the mechanical decoherence and the efficiency of
the state transfer from mechanical oscillator to light. To
avoid mechanical decoherence or other mechanical noise,
the preparation of the mechanical state has to be faster
than any decoherence process and also a pulse of light
reading the mechanical state has to interact only briefly
with the mechanical oscillator. The short interaction time
can cause limited efficiency of transfer, which can strongly
suppress or completely vanish the negativity of the Wigner
function. Recently, the first successful conversion of a basic
nonclassical Gaussian quantum state from mechanical motion
to microwave radiation was experimentally tested [38,39]. It
has opened a chance to generally investigate a realistic regime
of beam-splitter-type conversion based on that experiment.
However, the requirements to transfer the non-Gaussian states
with negative Wigner functions in that realistic regime are
much more strict. It is therefore important to develop very
efficient conversion of the non-Gaussian quantum state of
the mechanical oscillator to light before the mechanical
nonlinearity is experimentally investigated in the future.

In this paper, we propose a high-quality conversion of
non-Gaussian quantum states from a mechanical oscillator to
a traveling light beam powered by a feasible squeezing of light
produced by the available OPOs. If the conversion efficiency of
the beam-splitter type of optomechanical coupling is limited,
the proposed converter transfers any state of the mechanical
oscillator to light without any further access to the mechanical
oscillator. The proposed idea uses the common Gaussian
entangled states of light produced by the OPOs and injected
into the input of optomechanical systems, together with an all-
optical scheme at the output. It does not require any further de-
velopment of the mechanical oscillator. The optical converter
uses only routine high-quality quantum-optical elements:
auxiliary squeezed states of light, linear optics, highly efficient
homodyne detection, and electro-optical feedforward control.
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The conversion approaches a perfect transfer as the auxiliary
squeezing of light increases. Further, we prove a key stability of
the conversion under weak incoupling and outcoupling losses
presented before and after the optomechanical interaction.
The effective model of incoupling and outcoupling losses
describing high-quality converters is motivated by the only
existing conversion process for nonclassical states [38,39]. The
motivating example of an important quantum state from a cubic
nonlinearity is analyzed. The proposed Gaussian converter
opens up many future possibilities for the generation of a wide
range of non-Gaussian quantum states of light, after they are
reached in the mechanical oscillator. It can be used also for
other purposes, for example to efficiently read out quantum
memories.

The paper is organized as follows. In Sec. II, the direct
converter based on a beam-splitter type of optomechanical
coupling is described. This section is accompanied by the
Appendix, where a negligible impact of the mechanical
bath during the optomechanical coupling is verified and an
effective model of the incoupling and outcoupling efficiencies
is technically introduced. In Sec. III, the high-quality converter
powered by squeezed states of light is proposed and stability
of the conversion under limited incoupling and outcoupling
efficiencies is verified. In Sec. IV, the transfer of negativity
of the Wigner function is analyzed, followed by analysis
of the transfer of quantum states generated in the cubic
nonlinear potential in Sec. V. To enhance the negativity
of the Wigner function, the effects of presqueezing of the
mechanical oscillator are described in Sec. VI. The conclusion
briefly summarizes the results. In the Appendix, we present
a technical derivation of the direct beam splitter with the
incoupling and outcoupling efficiencies which can be used
to effectively describe the high-quality conversion processes
tested experimentally in Refs. [38,39].

II. DIRECT MECHANICAL-TO-OPTICAL CONVERTER

To describe the conversion mechanism for a broad com-
munity of quantum optics and quantum optomechanics, we
consider a standard optomechanical interaction in the pulsed
regime [40,41]. We skip the technical details of various
implementations. Moreover, we use here the effective and
simple model sufficient to describe high-quality conversion
from mechanics to radiation used in the experiment [38,39].
This model can be obtained from full analysis of pulsed
optomechanical systems with both optical and mechanical
baths presented in the Appendix.

To simply describe a core of the ideal conversion process,
we consider a mechanical oscillator with frequency ωm

and without any decay. On the other hand, we assume a
radiation mode in a cavity with resonance frequency ωc and
cavity decay rate κ . A signal optical pulse of duration �τ

and carrier frequency ωl enters the cavity and interacts by
radiation pressure with the mechanical oscillator. The goal is
to read out any quantum state of the mechanical oscillator.
In the regime of strong optical pumping, optomechanical
interaction can be described by a linearized coupling with
a strength g and laser detuning �c = ωc − ωl . Moreover, for
frequency-resolved sidebands and weak-coupling regime g �
κ � ωm, a red-detuned signal pulse (�c = ωm) inside the time

interval (τ,τ + �τ ) can advantageously feel a beam-splitter
interaction described in the rotating-wave approximation by
Langevin equations

ȧc = −κac − igam −
√

2κain, ȧm = −igac, (1)

where ac,ain (am) are annihilation operators rotating (counter-
rotating) with frequency ωm [40]. The output optical field
is then described by the input-output relation aout = ain +√

2κac. For operators

Ain = −i

√
2G

e2G�τ − 1

∫ τ+�τ

τ

eGtain(t)dt,

Aout = i

√
2G

1 − e−2G�τ

∫ τ+�τ

τ

e−Gtaout(t)dt (2)

satisfying [Aj ,A
†
j ] = 1, j = in,out, and Bin = am(τ ) and

Bout = am(τ + �τ ), the beam-splitter interaction

Aout =
√

T Bin + √
1 − T Ain,

Bout =
√

T Ain − √
1 − T Bin, (3)

between the exponentially rising and decreasing temporal
modes of light, and the modes of the mechanical oscillator
can be adjusted, where G = g2/κ and T = 1 − e−2g2�τ/κ is
a conversion efficiency of transfer from the mechanical mode
to the optical one. We are concerned mainly about the first
of Eqs. (3). For a time duration �τ substantially shorter to
avoid mechanical decoherence and all other technical noises,
the beam-splitter coupling allows a partial, but almost unitary,
coupling between the mechanical mode and the output mode
of the cavity. We verified the almost-unitary beam-splitter
coupling by taking the mechanical decoherence and noise into
account beyond the adiabatic elimination of the cavity mode;
see the Appendix. When mechanical decoherence is fast or
other destructive effects appear already for small g2�τ/κ , the
conversion efficiency T becomes limited. For any T < 1, the
conversion reduces the negativity of the Wigner function of
the mechanical state during its transfer to light. For T < 0.5,
the negativity of the Wigner function of the mechanical state
cannot be transmitted to light at all. It is because any Wigner
function of the state after T = 0.5 becomes equal to the
positive Husimi Q function of that state [42].

The simple coupling (3) of light and the optomechanical
cavity can suffer from imperfections caused by additional
damping in both optical and mechanical systems. We model
these imperfections by effective in- and outcoupling losses
which include as well other losses in the external parts of the
converter. The numerical analysis of the full dynamics of the
system carried out in the Appendix proves that the model of
losses approximates the imperfections very well for the setup
reported in Refs. [38,39]. This system is the only one to the
best of our knowledge that was experimentally capable of
transferring nonclassical states from mechanics to light.

Although the losses can be seemingly small, they may
seriously limit the quality and stability of any improvement
of the converter. The losses change the simple conversion (3)
to the following transformation:

Aout =
√

T ηoBin +
√

TLAin +
√

1 − T ηo − TLA0, (4)
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where T ηo and TL = (1 − T )ηiηo are transmission efficiencies
of states of mechanical and radiation modes through the
direct converter, ηi , ηo are the incoupling and outcoupling
transmissions, and A0 stands for the auxiliary annihilation
operator of a vacuum mode. Numerical simulations prove the
validity of Eq. (4) for the recent electromechanical experiment
[38,39] (see the Appendix). We, however, consider T , ηi , and
ηo as general parameters in the following discussion to keep
our results as general as possible. If the input light mode
described by Ain is in the vacuum state, the transfer only
suffers from additional outcoupling efficiency ηo. The goal
is to reach a beam-splitter type of converter with, at least,
conversion efficiency T ′ > T ηo and, later, with T ′ as close
to unity as possible. A basic benchmark for such a task is
clearly T ′ > 0.5, when the negative Wigner function of pure
mechanical states can be transferred to light. Moreover, the
stability of any conversion efficiency T ′ under a small decrease
ηi and ηo from unity is a key issue which has to be analyzed.

III. CONVERTER POWERED BY SQUEEZED LIGHT

To build a better beam-splitter type of converter with
T ′ > ηoT , a linear optical scheme with homodyne detectors
and electro-optical feedforward control depicted in Fig. 1
is proposed. It uses the squeezed states of light, a broadly
available resource in quantum optics. Currently, the squeezing
of light can be safely larger than −9 dB [43], corresponding to
the reduction of the quadrature variance to VS = 0.125 from
the vacuum variance calibrated to V0 = 1. The Gaussian two-
mode entangled state can be obtained from two orthogonally
squeezed lights, generated by the OPOs, which are mixed at
a symmetrical 50:50 beam splitter (SBS) implementing the
transformation

Ain = 1√
2

(AS1 + AS2), Aanc = 1√
2

(AS2 − AS1), (5)

where ASi are annihilation operators of orthogonally squeezed
modes and Aanc is the annihilation operator of the ancillary
optical mode. The mode described by Ain is then injected into
the cavity. After the optomechanical coupling (4), the mode

FIG. 1. (Color online) Universal conversion of non-Gaussian
quantum states of the mechanical oscillator generated by a nonlinear
potential to traveling light: OPO, optical parametric oscillator
generating squeezed light; C, optical circulator; SBS, balanced 50:50
beam splitter; BS, beam splitter with transmittance Tc; HD, homodyne
detector; gx,gp , electronic units with variable gains; and Dx,Dp ,
displacement operations.

described by output operator Aout is then split at a beam splitter
(BS) to two modes described by the operators

A′
out =

√
TcAout −

√
1 − TcAvac,

Atap =
√

TcAvac +
√

1 − TcAout, (6)

where A′
out is the output annihilation operator and Atap is

the annihilation operator of the tapped mode. The tapped
mode is then jointly measured with the ancillary mode in the
standard high-quality continuous-variable Bell measurement
[6,44,45]. The Bell measurement mixes Atap and Aanc at the
SBS and measures the outputs in complementary variables
X and P to obtain a complex number ᾱ = 1√

2
(Atap − A

†
anc).

The complex number is then used to control displacements
of the light mode A′

out in the following way: A′′
out = A′

out + gcᾱ.
The displacement is performed by standard high-speed and
very precise electro-optical feedforward control [6,46], where
electronic gains gx and gp can be freely optimized. The
methodology of the standard calculations can be found in
Refs. [6,46]. For given ηi , ηo, and T , we can find optimal
transmittance and electronic gain,

Tc = 1 − ηiηo(1 − T ), gx,p =
√

2
ηiηo(1 − T )

1 − ηiηo(1 − T )
, (7)

of the control circuit, to reach the beam-splitter coupling

A′′
out =

√
T ′Bin + √

1 − T ′A0 +
√

1 − Tc

Tc

(Ain − A†
anc) (8)

with the transmittance

T ′ = ηoT

1 − ηiηo(1 − T )
. (9)

The second term in Eq. (8), with A0 corresponding to a mode
in the vacuum state, represents the minimum quantum noise for
the transmittance T ′. The operator part of the third term can
be rewritten as Ain − A

†
anc = 1√

2
(XS1 + iPS2), where XS1 =

AS1 + A
†
S1 and PS2 = (AS2 − A

†
S2)/i are quadrature operators

of two auxiliary squeezed modes of light. As the variances
VS = 〈X2

S1〉 = 〈P 2
S2〉 decrease, residual additive noise caused

by the third term in Eq. (8) vanishes.
The beam-splitter coupling (8) can be then written for the

generalized output operators Q = X,P of quadratures of light
as

Q =
√

T ′QM + √
1 − T ′Q0 + QN, V ′

N = (1 − Tc)

Tc

VS,

(10)
where QM = XM,PM are position and momentum operators
of the mechanical oscillator, Q0 = X0,P0 are noisy operators
of a virtual oscillator at the ground state, and QN = XN,PN are
noisy operators of a virtual oscillator with the same variance
V ′

N . The variance V ′
N vanishes, as the Gaussian states with

larger squeezing are produced from both OPOs in Fig. 1.
Using Eqs. (7), for larger ηiηo(1 − T ) appearing when T

decreases, smaller VS is required. Remarkably, using only
Gaussian squeezed states we can better convert non-Gaussian
states with the conversion transmittance T ′ larger than the
original transmittance T ηo for any ηi,ηo > 0. For the high
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FIG. 2. (Color online) The improved transmittancy T ′ > T of
the squeezed-light powered converter for good converter T = 0.9
(top) and bad converter T = 0.1 (bottom). ηi,ηo are incoupling and
outcoupling efficiencies.

incoupling and outcoupling efficiencies ηi ≈ 1 and ηo ≈ 1,
the achievable transmittance approaches

T ′ ≈ 1 − 1 − ηo

T
− (1 − T )(1 − ηi)

T
. (11)

For a high-quality direct converter with T ≈ 1, ηo is mainly
limiting whereas the conversion is much more tolerant to a
smaller ηi , as is visible in Fig. 2 (top). If the incoupling
efficiency ηi can be neglected, for any ηo > 1/(1 + T )
the transmittancy T ′ > ηoT surpasses the direct mechanical
converter. For the high-quality converters, the squeezed light
can be therefore advantageously used to approach the maximal
conversion efficiency T ′ = ηo. On the other hand, for a
low-quality converter with T � 1, the converter is sensitive to
both ηi and ηo more equally. Transmittancy T ′ can be improved
relatively very much; however, it still might not be sufficient
to reach T ′ large enough to transfer highly nonclassical states,
as is visible from Fig. 2 (bottom). In Fig. 3, we illustratively
demonstrate the relative improvement in the transmittancy T ′

FIG. 3. (Color online) The relative improvement between the
transmittancy T ′ and the transmittancy ηoT of the direct converter.
ηi , incoupling efficiency, and ηo, outcoupling efficiency.

over the direct transmittancy ηoT . The threshold to observe
the negative Wigner function is discussed in the next section.

Remarkably, no challenging non-Gaussian error correction
[47] is required to improve the transfer of non-Gaussian
states from mechanical systems to light. Moreover, the
conversion scheme does not produce any excess noise when
the incoupling and outcoupling efficiencies are present. It
therefore overcomes the interfaces based on teleportation with
squeezed states [6], where the incoupling and outcoupling loss
introduces the excess noise destroying fragile quantum effects
from the higher-order nonlinearities.

IV. CONVERSION OF NEGATIVITY OF
THE WIGNER FUNCTION

From the Hudson theorem [48] it follows that any pure
non-Gaussian state exhibits negativity of the Wigner function.
To reach T ′ > 0.5 converting the negativity of any pure state
in the limit of small VS , the condition

T >
1 − ηiηo

(2 − ηi)ηo

(12)

has to be fulfilled. In Fig. 4, we demonstrate the required T for
transmission of multiple negativities of the Wigner function
for the decreasing incoupling and outcoupling efficiencies
ηi and ηo. For ηi = 1 and ηo < 1 (vanishing intracavity
losses), Eq. (12) simplifies to T > (1 − ηo)/ηo; therefore,
ηo > 0.5 is generally required. To reach T ′ > 0.5 for T < 0.5,
it needs ηo > 2/3. For symmetrical η = ηi = ηo, condition
(12) simplifies to T > Tth = 1−η2

(2−η)η , where Tth < 2(1 − η). It
follows, if T > 2(1 − η), that the presence of negativity of
the Wigner function in the traveling output beam can be
guaranteed for any pure mechanical non-Gaussian quantum
state. It can be compared with the condition T > 1/(2η) for
the preservation of negativity without the proposed method.
Clearly, for η ≈ 1, T ′ > T is obtained almost for all T < 0.5.
It means the transmittance T < 0.5 can be efficiently increased
to preserve the negative Wigner function, although the in- and
outcoupling efficiency η is not exactly unity. If ηi is different
from ηo, then ηo > 0.5 is required to preserve the negativity of
the Wigner function. On the other hand, ηi < 0.5 is tolerable
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FIG. 4. (Color online) The minimal transmittancy T of beam-
splitter coupling to reach T ′ > 0.5 for the squeezed-state powered
converter visualized by the lower light plane. ηi , incoupling efficiency,
and ηo, outcoupling efficiency. The dark upper plane corresponds
to the condition T > 1/(2ηo) for the direct converter without the
proposed method.

to keep the negativity of the Wigner function. Clearly, the
proposed method allows one to transfer the negativity of
the Wigner function generated in nonlinear dynamics of the
mechanical oscillator even for T < 0.5, if ηi and ηo are
sufficiently large.

V. CONVERSION OF MECHANICAL CUBIC STATE

To transfer the non-Gaussian quantum state from the
cubic nonlinearity to a traveling optical beam, we consider
first that the mechanical oscillator was cooled down to the
mechanical ground state |0〉M at the time t = 0. After the
ground-state preparation, the cubic potential V (xm) = 1

3κ3x
3
m

starts to influence the dynamics of the mechanical oscillator. To
evaluate only the impact of the conversion on the nonclassical
state arising in the cubic potential, we neglect the mechanical
decoherence. It is naturally required to obtain highly nonclas-
sical mechanical states. A feasibility analysis of the realistic
generation of the cubic states is beyond the scope of this paper.

For a time interval τ shorter than the time of mechanical
decoherence, the dynamics can be described by the Heisenberg
equations of motion,

ẋm = ωmpm, ṗm = −ωmxm − 6κ3x
2
m, (13)

for position and momentum operators xm = am + a
†
m and

pm = (am − a
†
m)/i. For ωm � κ3|xm| and short time duration

τ , the dynamics (13) is predominantly determined by the
cubic nonlinearity. In a first order of short-time approximation,
the mechanical position xm remains constant: xm(τ ) ≈ xm(0)
[41]. We neglect simultaneously the mechanical damping
and harmonic motion, which complicate the dynamics. The
quantum-mechanical momentum evolves as pm(τ ) ≈ pm(0) −
6κ3τx2

m(0). Since large κ3 can be used in the nonlinear
potential, a relatively large cubic effect can be obtained.
Further, it can be increased by presqueezing of the mechanical
state. We can therefore approximate the state after evolution
as exp(iκ3τx3

m)|0〉M . To witness the negativity of the Wigner

FIG. 5. Wigner function W (0,p) of state from cubic mechanical
nonlinearity with κ3τ = 1 transferred by universal converter (solid
black line) T = 0.5, ηi = ηo = 0.9, variance VS = 0.125 and for
ground initial state : (solid gray line) T = 0.5, ηi = ηo = 0.9 and
asymptotic variance VS = 0. For comparison, (dashed line) without
universal converter T = 0.5, ηo = 0.9, (dotted line) ideal state from
cubic nonlinearity with T = 1 and ηo = 1.

function, we determine a relevant slice of the Wigner function,

W0(0,pm) = 1

2
√

2π
3
2

∫ ∞

−∞
e− y2

2 −2iκ3τy3−ipmydy, (14)

for xm = 0 at time τ . The numerical evaluation of this integral
for pm > 0 gives positive values of W0(0,pm), contrary to
the oscillating behavior of W0(0,pm) for pm < 0 where it
not-periodically reaches an uncountable number of negative
semicircles, as depicted in Fig. 5 (dotted line). The amplitudes
of oscillations are decreasing in the amplitude and increasing
in the frequency. The oscillations are present for any κ3τ > 0
and the amplitudes become larger when κ3τ increases. The
multiple negative values of the oscillating Wigner function
manifest the highly quantum non-Gaussian character of the
state from cubic nonlinearity, incompatible with any mixture
of Gaussian states from quadratic nonlinearities [49].

After the transfer of the mechanical state to the output
optical mode through the beam-splitter coupling (10), the cut
of the Wigner function

W0(0,p) =
∫ ∞

−∞

e
− (1+V ′

N
)y2

2T ′ −2iκ3ty
3−i

py√
T ′ dy√

8π3T ′(1 + V ′
N + 12iκ3(1 − T ′ + V ′

N )y)

of the optical mode leaving the converter at Fig. 1 preserves
oscillations, but W0(0,p) becomes purely positive when V ′

N >

2T ′ − 1. The latter condition is equivalent to that for the
transfer of the Fock state |1〉M from mechanical oscillator
to light. Considering Eqs. (7) and (9), we finally obtain the
condition

VS < 1 − 1 − 2ηoT

ηiηo(1 − T )
(15)

for transfer of the multiple negativities of the Wigner function
of the cubic state generated in the mechanical oscillator to
the traveling light beam. Clearly, for ηoT > 0.5 the method
is not required if our purpose is just to observe the negative
Wigner function at the optical output. To be able to transmit
the negativity of the Wigner function with the help of any
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squeezing, the transmittancy has to satisfy

T >
1 − ηiηo

(2 − ηi)ηo

. (16)

Necessarily, ηo > 0.5 is required. For a high-quality direct
interface with ηi and ηo close to unity, the maximal variance
can be approximated by

VS,max ≈ T

1 − T
−

(
2 − 1

1 − T

)
(1 − ηi) − 1 − ηo

1 − T
. (17)

For the transmittancy T < 0.5, when the direct interface
cannot transmit the negativity of the Wigner function, it is
necessary to reach at least VS < T/(1 − T ). For the feasible
variance VS = 0.125 (−9 dB), we can only correct the
transmittancy T > 0.11, which is, however, enough to be
reached by the high-quality direct interfaces. For ηi = ηo =
0.9, the transmittance T > 0.27 is sufficient to transmit for the
same squeezing VS = 0.125. Clearly, the feasible squeezed
light generated in the experiments is sufficient to improve the
transfer for high-quality interfaces with T < 0.55. To reach
transfer of negativity for very small T , the variance VS of the
squeezed state has to decrease below

VS,max ≈ 1 − 1

ηiηo

+ 2ηo − 1

ηiηo

T , (18)

which is possible only for ηi and ηo sufficiently close to unity.
Squeezed states of light are still very helpful, but only if the
converter has reasonably small incoupling and outcoupling
losses. On the other hand, for high η0T > 0.5 the negativity
of the Wigner function is transferred always; however, the
method can help to approach the oscillations of the Wigner
function more precisely. Naturally, the transmittancy cannot
be improved over ηo, which becomes the main limit of quality
of the converter.

The numerical example is depicted in Fig. 5. It clearly
illustrates that all multiple oscillations of negative Wigner
function can be restored if they vanish (dashed line), despite
larger values of the incoupling and decoupling losses. In
Fig. 6, the contours of regions where the Wigner function
is negative are plotted for different T and η = ηi = ηo. As
η increases, the regions of negativity can be well transferred
from the mechanical oscillator to light. They are preserved
and only shifted due to a residual damping in the converter
powered by the squeezed light. It is an indicator that highly
nonclassical states produced in mechanical systems can be
efficiently transferred to light with the help of squeezed states
of light, homodyne detection, and electro-optical feedforward
techniques. Remarkably, the examples use an available amount
of squeezing from OPOs (solid black line), in comparison
with an asymptotic case (solid gray line). The remaining
difference from the ideal case becomes smaller, when the
incoupling and outcoupling losses are reduced. The effect of
cubic nonlinearity can be amplified by presqueezing of the
ground state of the mechanical oscillator before it evolves in
the cubic potential, as is described in the following section.

VI. CUBIC STATE GENERATION WITH PRESQUEEZING

In the near future, a quantum-mechanical oscillator will be
advantageously prepared in a highly squeezed position state.

FIG. 6. Contours of regions of negativity of the Wigner function
W (0,p) of state from cubic mechanical nonlinearity with κ3τ = 1
transferred by universal converter with T , η = ηi = ηo, and variance
VS = 0.125: η = 1 (solid black line), η = 0.9 (dark gray line), η =
0.8 (light gray line), η = 0.7 (dashed light gray line), and η = 0.6
(dotted light gray line).

An approach to reach this can be a short time application
of very deep quadratic potential after the cooling of the
mechanical oscillator. The width of such a potential dip can be
much narrower than the position variance of the mechanical
ground state. Alternatively, a highly squeezed state can be
generated by a precise pulsed measurement, which projects
the mechanical oscillator almost to the position basis state
|x = x̄m〉M . Since x̄m is known from the measurement result, it
can be compensated to approach |x = 0〉M . After both types of
procedures, the position state |x = 0〉M can be swapped to the
state |p = 0〉M by a free evolution of the mechanical oscillator
during the time interval π/(2ωM ). After these steps, the cubic
nonlinearity can be applied for a period much shorter than
the mechanical decoherence time. It allows one to approach
the state proportional to

∫ ∞
−∞ dx exp (iκ3tx

3)|x〉M with the
Wigner function

W (x,p)Ai

[
p + 6κ3tx

2

(6κ3t)1/3

]
,

where Ai[z] is the Airy function. The Airy function captures
interesting quantum features of the state from quantum cubic
nonlinearity. When z is positive, Ai(z) is positive, convex,
and decreasing exponentially to zero. When z is negative,
Ai(z) oscillates around zero with ever-increasing frequency
and ever-decreasing amplitude. The oscillations in W (0,p)
appear for any p < 0 and they are present for any κ3t , only
their amplitudes are smaller. These oscillations are highly
nonclassical aspects of continuous time dynamics.

Any physical measurement or physical potential will ideally
prepare the physical squeezed state |r〉M = SM (r)|0〉M in
position. The squeezing is applied sufficiently faster than
mechanical free evolution and then the state is transformed
by the latter to a squeezed state in the momentum. The
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squeezing amplifies the initial position of the mechanical
oscillator xm(0) → xm(0) exp(r) in the ground state and
squeezes the momentum variable pm(0) → pm(0) exp(−r),
before the cubic nonlinear potential is applied. r is an effective
squeezing parameter determined as a product of evolution and
measurement time and either width of quadratic potential or
strength of nondemolition measurement. After fast evolution
in the cubic nonlinear potential, we obtain the state

S
†
M (r)eiκ3tX

3
mSM (r)|0〉M = SM (r)κ3e

i exp(r)tX3
m |0〉M,

which is a squeezed version of much faster evolution in the
cubic potential. The interaction time t changes to exp(r)t being
enhanced by squeezing factor r . We can therefore decrease
the product κ3t to protect evolution against the mechanical
decoherence and noise and imperfections of the potential for
the mechanical oscillator far from the origin.

VII. CONCLUSION

We proposed efficient and feasible transfer of the non-
Gaussian quantum states of the mechanical oscillator to light.
The mechanical part relies on a running development of
optically levitating particles in optical tweezers, where a wide
range of nonlinear optical potentials can be well designed.
The required non-Gaussian states of light can be therefore
produced in the near future. Our proposal of the squeezed-
state powered converter does not require any modification
of the mechanical oscillator; it is purely based on feasible
quantum operations on the optical part of the converter. This
proposal is an example of how quantum optomechanics can
be useful to generate new nonclassical states for quantum
optics, using, however, simultaneously high-quality outcomes
of quantum optics: squeezed light, homodyne detection, and
electro-optical feedforward control. The idea of the proposed
converter is, however, more general; it can be applied to
other physical platforms [50], for example, experiments with
quantum memories [51] or microwave radiation [38,39].
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APPENDIX: INFLUENCE OF THE MECHANICAL BATH
ON READOUT OF THE MECHANICAL STATE

The transformation (4) in the main text is obtained by
adiabatic elimination of the cavity mode that amounts to
putting ȧc = 0 in Eq. (1). This approximation is valid if
G/κ � 1 and the interaction time is sufficient (�τ 
 1/κ).
These conditions can be combined as 1/�τ � G � κ .
Simultaneously, we neglected the influence of the optical
and mechanical baths. In this Appendix, we provide the
analysis of a general optomechanical setup, make numerical
estimations using parameters from Refs. [38,39], and compare

to the simple model based on the effective incoupling and
outcoupling efficiencies that we used in the main text.

We start with writing linearized equations of motion
describing an optomechanical system [22]. The two modes
comprising the system are coupled to each other by means of
a beam-splitter-like interaction and as well interact with the
environment. The mechanical mode is coupled to the thermal
bath at rate γ . The optical mode is not only coupled to the
detection channel at rate κe, but also experiences losses at rate
κi : κe + κi = κ . The equations then read

dv

dt
= Av −

√
2κefin − f, (A1)

where v = (X,Y,q,p)T is the vector of quadratures, A is the
drift matrix, f is the vector of noises, and fin = (Xin,Yin,0,0)
is the vector of optical input fields:

A =

⎛
⎜⎝

−κ 0 −g 0
0 −κ 0 −g

g 0 − γ

2 0
0 g 0 − γ

2

⎞
⎟⎠, f =

⎛
⎜⎜⎝

√
2κiX

L
in√

2κiY
L
in√

γ ξq√
γ ξp

⎞
⎟⎟⎠.

The equations allow an analytical solution written with the
help of the matrix exponential M(t) ≡ exp[At]:

v(t) = M(t)v(0) −
∫ t

0
ds M(t − s)[f (s) +

√
2κefin(s)].

Supplementing the solution with an input-output relation
for optics, vout = √

2κev + fin, and definition of the output
quadratures [Eq. (2)]

Vout = N
∫ τ

0
dt voute

−Gt , N ≡
√

2G

1 − e−2Gτ
,

allows one to write the solution for the latter as well:

Vout = N
∫ τ

0
dte−Gt

[
fin(t) +

√
2κe ×

(
M(t)v(0)

−
∫ t

0
dsM(t − s)[f (s) +

√
2κefin(s)]

)]
. (A2)

In order to quantify the impact of the different sources on
the output optical state one can compute its covariance matrix
(CM) with elements defined as

UAout ij ≡ 〈{
Vouti ,Voutj

}〉
, i,j = 1,2, (A3)

where {a,b} = 1
2 (ab + ba). This CM appears to be a linear

combination of CMs of the initial states and input fields.
To calculate UAout we substitute the solution (A2) into the

definition (A3), and interchange the order of integration and
expectation. Assuming all the noises to be Markovian, namely

〈{v(0),v(0)}〉 = UA(0) ⊕ UBin ,

〈{f (t),f (t ′)}〉 = 2κiUA0 ⊕ γUBm
· δ(t − t ′),

〈{fin(t),fin(t ′)}〉 = UAin ⊕ 02×2 · δ(t − t ′),

(A4)

allows us to write the expression for the CM of the output
optical mode state in simple form:

UAout = TBinUBin + TAinUAin + TA0UA0

+ T in
m UBm

+ TA(0)UA(0). (A5)
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Here and in Eqs. (A4) by UX we denote the CM of the mode in
the state with annihilation operator X to match the notations of
Eq. (4) of the main text. Bm is the state of the mechanical bath
and A(0) is the initial state of the intracavity optical mode; Bin,
Ain, and A0 (defined in the main text) correspond respectively
to initial mechanical, optical input, and optical vacuum states.
UBin represents the input of the converter and TBin is hence the
transfer coefficient. All other terms represent contributions of
the noise in the converter.

The coefficients describing transfer of the mechanical bath
and optical input variances to the optical output mode equal

T in
m = N 2

∫∫ τ

0
dtdt ′e−G(t+t ′)2κe

×
∫ t

0
ds

∫ t ′

0
ds ′ mc(t − s)mc(t ′ − s ′)δ(s − s ′),

TAin = N 2
∫∫ τ

0
dtdt ′e−G(t+t ′)

×
[
δ(t − t ′) − 4κe

∫ t ′

0
ds ′ m1(t ′ − s ′)δ(t − s ′)

+ 4κ2
e

∫ t

0
ds

∫ t ′

0
ds ′ m1(t − s)m1(t ′ − s ′)δ(s − s ′)

]
,

where

m1(t) = M1,1(t), mc(t) = M1,3(t).

The other coefficients are rather involved as well, so we do
not present the explicit expressions for those here.

By making estimations using the parameters of the recent
experiment in Ref. [39], we conclude that the coefficients
TBin , TAin , and TA0 coincide with their counterparts in Eq. (4)
(respectively T ηo, TL, and 1 − T ηo − TL) with accuracy up to
G/κ . The in- and outcoupling transmissions ηi,o are equal to
the ratio of the decay rate of the cavity to the readout channel
κe to the total decay rate κ: ηi = ηo = κe/κ .

T
min

0.2 0.4 0.6 0.8 1.0

1. 10 4

5. 10 4

1. 10 3

5. 10 3

TBin

FIG. 7. Transfer of the mechanical bath variance T in
m as a function

of the signal transfer TBin calculated with parameters of the experiment
reported in Ref. [39]. Solid and dashed lines represent respectively
the full analytical solution (A5) and the approximate solution after
adiabatic elimination of the cavity mode. The gray dashed line denotes
the limit of possible transmittivity set by ηo = κe/κ ≈ 0.83.

The coefficient T in
o equals zero with same accuracy;

hence, it is absent in Eq. (4). The coefficient T in
m describes

coupling to the noisy mechanical bath, so one should be
cautious neglecting it. However, due to the small mechanical
decoherence rate γ it is safe to omit it as long as the effective
mechanical decoherence γ nth (nth is the mean mechanical bath
occupation) is small: γ nth � 1/�τ . This condition is typically
fulfilled in an experiment. We plot T in

m as a function of TBin

in Fig. 7. The figure proves that the impact of the mechanical
bath is small enough to be neglected.

In summary, we verified that the effective model including
the incoupling and outcoupling efficiencies (4) can be used
to describe the high-quality conversion process that satisfies
γ nth � 1/�τ � G � κ . These requirements, however, are
anyway desirable if our conversion is considered to transfer
highly nonclassical mechanical states to the traveling light
beams.
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