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Quantum coherence, the ability of a quantum system to be in a superposition of orthogonal quantum states, is
a distinct feature of the quantum mechanics, thus marking a deviation from classical physics. Coherence finds
its applications in quantum sensing and metrology, quantum thermodynamics and computation. A particularly
interesting is the possibility to observe coherence arising in counter-intuitive way from thermal energy that is
without implementation of intricate protocols involving coherent driving sequences. In this manuscript, we in-
vestigate quantum coherence emerging in a hybrid system composed of a two-level system (qubit) and a thermal
quantum harmonic oscillator (a material mechanical oscillator), inspired by recent experimental progress in fab-
rication of such systems. We show that quantum coherence is created in such a composite system solely from
the interaction of the parts and persists under relevant damping. Implementation of such scheme will demon-
strate previously unobserved mechanisms of coherence generation and can be beneficial for hybrid quantum
technologies with mechanical oscillators and qubits.

I. INTRODUCTION

Coherence is a fundamental concept in quantum mechanics that is connected to the superposition of quantum states in a
basis preferred for a certain application. Quantum states that possess this non-zero coherent superposition of basis states can
provide advantage for science and technology over the incoherent statistical mixtures of the same basis states. Coherence
enhances performance of the quantum protocols in sensing and metrology [1, 2], quantum thermodynamics [3, 4], and quantum
information processing [5–7]. Quantum coherence has been shown to play a role in biological processes as well [8, 9]. In
order to quantify the coherence, a few resource theories have been put forward [10–13]. Interplay between coherence and other
quantum resources such as entanglement, discord and steering has been investigated in [14, 15]. On the other hand, it remains
unexplored how quantum coherence emerges during quantum dynamics from incoherent thermal states.

Generally, quantum coherence of an open system emerges in presence of an external strong coherent drive. Recently, it has
been shown [16] that quantum coherence can emerge in a steady state of a system that only interacts with its environment
given certain properties of this interaction. Subsequent studies proposed similar system-environment phenomena [17–22]. In
parallel, an experimental proposal in double-quantum-dot solid-state systems was analyzed [23]. However, even proof-of-
principle experimental tests of such phenomena are still missing due to the challenging engineering of composite interactions.

In our work we investigate coherence emerging in a hybrid electromechanical system similar to the one studied in [24]. We
show that coherence in each subsystem can emerge solely from coherent interaction between the constituents that start from
fully incoherent states. We analyze such thermal rise of quantum coherence in quantum electromechanics and propose an exper-
iment to observe the principle mechanism. Moreover, we describe a regime where thermal mechanical oscillator monotonously
stimulates qubit coherence, even if the phonon number is much larger than unity. Hybrid systems such as this combine ben-
efits of the constituents allowing the positive synergy to open new perspectives in science and technology. Electromechanical
systems, by combining advantages of superconducting devices and high-Q mechanical oscillators, allow preparation of exotic
states of macroscopic mechanical oscillators [24, 25], and transduce quantum information between microwave and optical do-
mains [26, 27]. Such transduction not only allows an effective long-range communication between superconducting devices but
also their effective readout by optical means [28].

II. RESULTS

A. Model of the qubit-mechanical system

In this manuscript, we demonstrate a possibility to generate coherence in a coupled system of nanomechanical oscillator and a
two-level system (a qubit) from a fully incoherent state. A schematic depiction of the scheme is in Fig. 1 (a). First, we introduce
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FIG. 1. (a) Schematic diagram of the physical system. A single-mode mechanical harmonic oscillator of frequency ωm is coupled to a
qubit (frequency ωq) via a general coupling rate g0. (b) A sketch of the interaction protocol between the qubit and the mechanical mode.
Before the interaction, the qubit and the mechanical oscillator are prepared in the incoherent states, respectively, ρq(0) and ρm(0), either by
cooling, or by equilibration with the corresponding bath. The quantum coherence is evaluated after the interaction has finished, and can be
probed by microwave readout. (c) An experimental illustration of the model consisting of a charge qubit (CPB) coupled to the mechanically
compliant capacitors in an electromechanical system [24]. The red-dashed rectangle area indicates the Josephson Junction (JJ) represented
by a nonlinear inductor and a Josephson capacitor CJ . The suspended superconducting islands of the CPB which connect the charge qubit
to the superconducting reservoir (other parts of the circuit) are displayed in light and dark green colors. The motion of the mechanical
oscillator (blue electrodes) can modify the separation between the two capacitors C±m(x) which are modulated with the opposite phase by
the anti-symmetric motion of the mechanical oscillator (MO). Vdc characterizes the DC-voltage applied to the MO. The gate-charge (offset
charge) ng = Cg(x)Vg(x)/2 applying on the CPB, can be defined by the equivalent capacitor Cg(x) and voltage Vg(x) of the circuit which are
now position-dependent (see Appendix A). The modulation of the offset charge via the mechanical motion induces a coupling between the
mechanical motion and qubit-electrostatic energy. (d) The equivalent circuit of the experimental model.

a theoretical description of the system and the figures of merit. The electromechanical systems of interest, akin to investigated
in [24], can be described by the Hamiltonian (~ ≡ 1)

H =
ωq

2
σz +

ωm

2
(X2

m + P2
m) +

√
2g0(sin θσx + cos θσz)Xm. (1)

Here the first two terms describe the free dynamics of the qubit (with Pauli matrices σi and transition frequency ωq) and the
nanomechanical oscillator (with eigenfrequency ωm and the dimensionless position and momentum quadratures, respectively,
Xm and Pm normalized such that [Xm, Pm] = i). For convenience, we also define the detuning ∆ = ωq −ωm. The third term in (1)
describes the interaction between the qubit and mechanics required to achieve emerging quantum coherence [16]. We focus on
proof-of-principle demonstration of the interaction mechanism using only one dominant mode at the frequency ωm coupled to
an external bath. From a thermal occupation of the qubit, this composite interaction can generate a coherent displacement of the
oscillator, continuously generating quantum coherence in the qubit. In an experiment the hybrid interaction can be realized via
capacitive, magnetic flux or electromotive coupling methods [29]. The coupling can be tuned in magnitude by changing the rate
g0 or adjusted by manipulating the value of θ. This can be advantageously reached by utilizing the suitable lumped elements in
the superconducting circuit [24, 29, 30] since in our model θ depends on the charging and Josephson energies while g0 can be
controlled through DC voltage bias and capacitors of the circuit as well as charging energy (see Fig. 1(c,d) and Appendix A for
more details).

To investigate emerging coherence in such system, we assume that both mechanics and qubit are prepared initially in thermal
states, states that lack coherence in the natural basis of Fock states. The initial state of the compound system therefore reads

ρ(0) = ρqubit(0) ⊗ ρm(0) =
(
Pee|e〉〈e| + (1 − Pee)|g〉〈g|

)
⊗

∞∑
k=0

nk
m

(1 + nm)k+1 |k〉〈k|, (2)

where |g〉 [|e〉] is the ground [excited] state of the qubit, |k〉 is a Fock state of the mechanical oscillator, Pee = nq/(2nq + 1).
The mean occupation number of mechanics nm and the occupation parameter nq of the qubit obey Bose-Einstein statistics:
ni = [exp(~ωi/kBTi) − 1]−1 for i = q,m, with kB being the Boltzmann constant and Ti the temperature of the corresponding
subsystem.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Maximally attainable coherence Cq and mechanical displacement Cm as a function of the initial occupation of mechanics (a,d) or qubit
(b,e) given a constant initial occupation of the other subsystem. In (a,d) the qubit is initially in the ground state Pee = 0. In (b,e) the mechanics
has initial occupation nm = 0.5. Insets show the evolution of Cq and Cm as functions of time for different occupation. Note that Cq and Cm

assume their corresponding maximal values at different instants of time. (c,f) Optimum values of Cq,Cm as a function of the initial temperature
assuming equal temperature baths for both subsystems. The inset plots of panels (c,f) show how Cmax

q ,Cmax
m change as a function of equal initial

occupation (in this case, the initial temperatures differ in panel (f)). In each panel, weak coupling regime g0 = 0.1ωm is assumed. The panels
(a,b,c) correspond to the resonance between the qubit and MO (ωm = ωq), in (d,e,f) ωq − ωm = ∆ = 10ωm.

The dynamics generated by the Hamiltonian (1) is capable of driving the initially incoherent state (2) into a state in which
both mechanics and the qubit possess quantum coherence. From a plethora of available measures of coherence (see Ref. [11] for
a review), we choose the l1-norm-based measure [31] to quantify the qubit coherence. This measure has the meaning of mean
displacement in xy−plane and can be computed for the qubit as

Cq =

√〈
σx

〉2
+

〈
σy

〉2
. (3)

Throughout the manuscript we will compare the qubit’s coherence with the mean coherent displacement of the oscillator Cm =√
〈Xm〉

2 + 〈Pm〉
2. Note that in general the l1-norm such as displacement is not a proper coherence monotone for an oscillator

(a system with infinite-dimensional Hilbert space) as it can diverge on states with finite mean energy [32]. Nevertheless, the
mean coherent displacement is an illustrative quantity that can provide a quantum advantage in e.g. metrology. The mean values
in Eq. (3) are computed over the evolved quantum state ρ(t). In the case of unitary dynamics, ρ(t) = e−iHtρ(0)eiHt. In a realistic
case where both systems are subject to decoherence caused by interaction with the corresponding environment, one has to use
more complicated tools, such as solving master equation (see Section IV for elaboration).

B. Quantum coherence generated by pulsed noiseless dynamics

The simple model of the Hamiltonian (1) captures a rich dynamics whose exact type depends on the interplay between the
eigenfrequencies of individual subsystems ωm,q and the coupling defined by its magnitude g0 and phase θ. Moreover, generation
of coherence in this system is determined by the initial state before the interaction starts. In this subsection, we show that,
counterintuitively, increasing temperature of the initial quantum state can be beneficial for generation of coherence in the qubit.
To estimate the limits of attainable values of coherence, we start with the noiseless case when the two subsystems, the MO and
the qubit are decoupled from their environments and only couple to each other.

In order to see the effect of the initial thermal occupation on the coherence generation, we simulate the dynamics of the system
driven by only the Hamiltonian (1) and ignore the coupling to the environment. In this case, the quantum state of the bipartite
system after the interaction can be obtained straightforwardly by applying unitary transformation to the initial product state (2).
The estimates of the coherence emerging from the unitary qubit-mechanical interaction are shown at Fig. 2. The numerical study
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assumes weak coupling regime g0 = 0.1ωm � ωm + ωq, and θ = π/4, equal coupling of mechanical displacement to both σx
and σz, in order to gain the optimum values of the coherence parameters (the dependence of the coherence parameters to θ, i.e.,
coupling rates gx, gz, as well as the absolute value of the qubit-mechanical coupling g0 and the detuning ∆ is discussed in more
details in Sec. II C).

As seen in Fig. 2(a,d), having a hotter initial mechanical state has a positive effect on qubit coherence such that by increasing
the mechanical temperature or equivalently increasing thermal occupation nm, we reach higher maximum values for Cmax

q . The
duration of time it takes to reach the maximal value Cmax

q is also reduced with increasing initial occupation nm, which is illustrated
by the inset plots. This phenomenon contrasts with a steady-state qubit coherence induced by a multimode bosonic bath [16, 21,
23], where the maximum of coherence appears for vanishing temperature. Interestingly, the increase in coherence is accompanied
by only a moderate coherent displacement decrease in the oscillator. The opposite happens when the qubit’s initial temperature
is increased at ∆ = 0 when we fix the value of nm = 0.5. As seen in Fig. 2(b) the maximum accessible amounts of Cq can be
reached when Pee = 0, i.e., nq = 0. Elevated initial occupations of the qubit do not significantly alter the qubit coherence Cq in
the dispersive regime ∆ = 10ωm. Therefore, it is advantageous to keep the qubit initially in the ground state and increase the
oscillator’s initial temperature to observe emerging quantum coherence, more significant than the steady-state coherence [16,
21, 23].

The optimum values of Cm show a slow reduction as a function nm for ∆ = 0, while in the dispersive regime the maximum
values of Cmax

m do not change considerably with respect to nm (compare Fig. 2(a,d), blue dots, and inset plots for Cm). In addition,
by increasing the detuning and moving from the resonance case to the off-resonance one, the decrease rate of Cmax

m becomes faster
when the qubit temperature rises (compare Fig. 2(b,e), blue dots, and inset plots for Cm).

Finally, for the case in which the initial temperatures of the qubit and the MO are equal (Tm = Tq = T ), the maximum attainable
amounts of Cq and Cm are shown in panels (c) and (f) of Fig. 2, for resonance and off-resonance cases, respectively. Inset plots
of Fig. 2(c,f) also demonstrate the optimum values of coherence parameters as a function of the initial occupation assumed equal
for both subsystems (nq = nm = nm,q). As is seen, by increasing the thermal occupation numbers of two subsystems at the
same time, i.e., increasing nm,q, Cmax

q , and Cmax
m decrease (the reduction rate of the Cmax

q as a function of nm,q is not significant
in dispersive regime ∆ = 10ωm). For the case of resonance, the results of the inset plots are the same as the main plot (c), as
ωm = ωq and Tm = Tq = T give us the identical occupations nm = nq = nm,q. However, at ∆ = 10ωm, the main plot of Fig. 2(f)
for Cmax

q shows a small increase as the temperature of the baths rises simultaneously. Therefore, we can conclude that as long as
nq < nm, by raising the temperature, it is possible to observe an increase of the value of the qubit coherence parameter.

In addition, by comparing the first row and the second row of Fig. 2, we realize that by increasing the detuning, the energy
exchange between the mechanical mode and qubit through the coupling channel gx = g0 sin θ reduces, which causes the reduction
in maximum accessible amount of qubit coherence since Cq depends on both gx and gz = g0 cos θ (see Sec. II C for further
details). On the other hand, as Cm is only influenced by coupling rate gz, increasing the detuning does not affect the maximum
reachable amount of Cmax

m .

C. Effect of the interaction parameters on the coherence generation

To demonstrate the effects of the coupling rates gx and gz on the generation of quantum coherence in the system, in first
and second columns of Fig. 3, we showed the evolution of coherence parameters Cq and Cm in time and with respect to θ, in
weak coupling regime g0 = 0.1ωm, for resonance (∆ = 0) and off-resonance (∆ = 10ωm) conditions, respectively. For both
cases, the maximum oscillator displacement rises at ωmt = π, but the maximum qubit coherence appears delayed at resonance
in Fig. 3 (a,b). Out-of-resonance, in Fig. 3 (d,e), both displacement and coherence appear synchronously.

As is seen from Fig. 3(a,d), the qubit coherence parameter Cq(t) takes the non-zero value when θ , nπ/2 (n = 1, 2, · · · ), i.e.,
when both gx, gz , 0. The maximum amount of Cq(t) can be obtained for θ = (2n+1)π/4, which shows that Cq strongly depends
on the factor |gxgz| = |g2

0 sin(2θ)/2|. In addition, increasing the detuning causes a fast reduction in the maximum available
amounts of qubit coherence Cq (compare panels (a) and (d) in Fig. 3). Moreover, at resonance, the evolution of Cq(t) becomes
maximized around t ≈ 2mπ/ωm (m ∈ N), whereas at ∆ = 10ωm, the interference pattern shows itself in shorter time interval and
the maximum values of Cq shift to smaller time interval 2π/3 < ωmt < 4π/3.

On the other hand, for the fixed values of g0 = 0.1ωm, nm = 0.5 and nq = 0, the mechanical displacement Cm(t) is not
influenced by changing the detuning (see Fig. 3(b,e)) and is only affected by the displacement coupling rate gz = g0 cos θ.
Therefore, the maximum amount of Cm is achieved when θ = (2n + 1)π/2 and t ≈ (2m − 1)π/ωm.

In Panels (c) and (f) of Fig. 3, the maximum values of dynamical coherence parameters are depicted as a function of absolute
qubit-mechanical coupling g0/ωm which shows that the stronger coupling gives rise to higher quantum coherence in the system.

The dependence of the mean values of the mechanical quadratures 〈Xm(t)〉 and 〈Pm(t)〉 on gz and the Pauli matrices 〈σx(t)〉
and 〈σy(t)〉 on both gx and gz can also be revealed analytically for a very short time interval in ideal evolution where we can
approximate the time evolution operator U(t) = e−iHt ≈ I − iHt. Therefore, the final state of the system up to second order in
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FIG. 3. Coherence dynamics caused by qubit-oscillator interaction: (a,b,d,e) The contour plots of the coherence parameters Cq and Cm with
respect to the normalized time ωmt and θ when g0 = 0.1ωm. (c,f) The maximal attainable values of the quantum coherence as a function of
normalized qubit-mechanical coupling g0/ωm for θ = π/4. In (a-c) ∆ = 0, in (d-f) ∆ = 10ωm. Other parameters are nq = 0 and nm = 0.5: the
qubit is initialized in its ground state while the MO is in a thermal state.

time is given by

ρ f (t) ≈ ρ(0) − it
[
H, ρ(0)

]
+ t2H ρ(0) H + O(t2). (4)

Under such approximation, the system operators’ mean values become

〈Xm(t)〉 ≈
√

2gzt2
[
ωmnm(4nm + 3)(2Pee − 1) +

ωq

2
(2nm + 1)

]
, (5a)

〈Pm(t)〉 ≈ −
√

2gzt (2Pee − 1), (5b)

〈σx(t)〉 ≈ 2gxgzt2(2nm + 1) (2Pee − 1) , (5c)
〈σy(t)〉 ≈ 0. (5d)

where Pn,n = nn
m/(1 + nm)n+1 denotes coefficients of expansion of the initial thermal state of the mechanics in the Fock-state

basis, nm is this state’s mean occupation. From Eq. 5, we see that up to O(t2), the mechanical quadratures 〈Xm(t)〉 and 〈Pm(t)〉
are only affected by gz. However, 〈σx(t)〉 and therefore, Cq depends on the product gxgz. From Eqs. (5c) and (5d), we obtain
Cq ≈ |〈σx(t)〉| = 2|gxgz|t2(2nm + 1)/(2nq + 1). This indicates that in short time interval, Cq changes quadratically with time
(Cq ∝ t2). The qubit coherence Cq also depends on the mechanical and the qubit occupation number ratio Cq ∝ (2nm+1)/(2nq+1)
which reveals why we could attain better results of Cmax

q when nq < nm (see Fig. 2). Hence, the best result can be achieved when
we fix nq = 0, while increasing the initial occupation nm (see Fig. 2). While the short-time approximation agrees qualitatively
with simulations, the quantitative agreement holds only for very short times ωmt � 1. The maximal values of coherence are
reached at considerably longer times which, unfortunately, do not admit the analytical solution.

It is also worth looking at the variations of the quantum coherence with respect to the detuning to investigate the resonant
nature of this phenomenon. The optimum values of coherence parameters Cmax

q and Cmax
m as a function of normalized detuning

∆/ωm have been demonstrated in Fig. 4(a), where we can detect a maximum peak for Cmax
q around ∆/ωm ≈ 0. However, the

maximum amounts of the mechanical coherent displacement Cmax
m won’t alter much as a function of detuning which is consistent

with Fig. 3(b,e) when we fix the values of g0 = 0.1ωm, θ = π/4, nm = 0.5 and nq = 0.
In addition, in panels (b,c) of Fig. 4, we showed the evolution of Cq and Cm, respectively, for different values of normalized

detuning. As is seen in panel (b), by changing the detuning from ∆ = −0.5ωm to ∆ = 10ωm and moving to the dispersive regime,
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(a) (b)

(c)

FIG. 4. Resonant features of emergent quantum coherence: (a) Optimum values of the coherence parameters as a function of the normalized
detuning ∆/ωm. The definition of the detuning ∆ = ωq − ωm does not allow values below −ωm. The evolution of (b) the qubit coherence Cq(t)
and (c) the mechanical coherent displacement Cm(t) for different values of detuning. Other numerical parameters are g0 = 0.1ωm, θ = π/4,
nm = 0.5, and nq = 0.

the amplitude of Cq diminishes fast. On the other hand, the oscillation amplitude of Cm becomes maximized for the initial time
interval, and increasing the detuning doesn’t change it (see Fig. 4(c)).

To find out why the coherence parameters respond to the detuning like what is mainly shown in Fig. 4, it would be better to
take a look at the Hamiltonian of the system in the interaction picture, given by

H(I) = e+iH0tHe−iH0t − H0 = gx(σ−a† e−i∆t + σ+a e+i∆t) + gx(σ+a† eiΣt + σ−a e−iΣt) + gzσz(a† e+iωmt + a e−iωmt), (6)

where a = (Xm + iPm)/
√

2 denotes the mechanical annihilation operator, and Σ = ωq + ωm. From Eq. (6), we can see that
for ∆ ≈ 0, the rotating terms gx(σ−a† + σ+a), which are responsible for an exchange of excitations between the qubit and
the MO, play the dominant role in the dynamics of the system, more specifically in Cq through the coupling channel gx. By
increasing the absolute value of the detuning, both the rotating and counter-rotating terms in Eq. (6) start oscillating fast with the
frequency of ∆ and Σ, respectively. In the dispersive regime, where Σ > ∆ ≥ 10ωm, and due to the adiabatic evolution, the energy
exchange between the qubit and the MO which mainly happens through the coupling channel gx diminishes. This affects the
qubit coherence which depends on both gx and gz factors and leads us to the smaller maximum amounts of Cq. As the mechanical
coherent displacement is mainly influenced by the coupling rate gz and therefore, the displacement term gzσz(a† e+iωmt +ae−iωmt),
changing the detuning can not significantly impact Cm (see Fig. 3(b,e) and Fig. 4(a,c)).

D. Quantum coherence in the presence of damping and noise

In order to study the dynamics of the system more realistically, we need to take the dissipation and decoherence effects into
account. For an open system interacting with an environment, its density matrix obeys the Lindblad master equation

ρ̇ = −i[H, ρ] +
γm

2
(nm + 1)L(a)ρ +

γm

2
nmL(a†)ρ +

γq1

2
(nq + 1)L(σ−)ρ +

γq1

2
nqL(σ+)ρ (7)

Here, L(O) = 2OρO† − (O†Oρ + ρO†O) (O ≡ a, a†, σ±) denotes the Lindblad superoperator. Further, γm, γq1 = 1/T1 represent
the mechanical and qubit relaxation rates, respectively. By solving the master equation (7) numerically, we have investigated the
effects of the mechanical and qubit damping on the dynamics of coherence parameters for resonance case ∆ = 0 (see Fig. 5).

In panel (a) of Fig. 5, we showed the changes of the attainable quantum coherence with respect to the mechanical damping
rates γm/ωm in the absence of the qubit dissipation and noise (γq1 = nq = 0) and when the system is operated in resonance
condition ∆ = 0 and weak coupling regime g0 = 0.1ωm. We also consider the mechanical occupation to be nm = 0.5. As can be
seen in Fig. 5(a), the maximum values of coherence parameters Cmax

q and Cmax
m do not change considerably as γm/ωm increases.

In addition, it is evident from the inset plots of Fig. 5(a) that the dynamical coherence parameters overlap for all γm/ωm < 10−2

which means that they are completely robust against mechanical damping as far as γm/ωm < 10−2. Moreover, larger values
of the mechanical dissipation such as γm/ωm = 10−2, do not affect the coherence parameters for the initial time interval (red
dotted-dashed lines in inset plots of Fig. 5(a)). However, we could observe decrease of the coherence parameters for a longer
time. By comparing the inset plots in 5(a), we realize that Cq decreases with the faster rate than Cm for γm/ωm = 10−2.
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(a) (b)

FIG. 5. Robustness of emerging quantum coherence: optimum values of the coherence parameters as a function of the normalized (a) me-
chanical damping rate γm/ωm when γq1/ωm = 0 and (b) qubit damping rate γq1/ωm for γm/ωm = 10−6. Inset plots show the evolution of the
coherence parameters for different values of (a) γm/ωm and (b) γq1/ωm. Other numerical parameters are ∆ = 0, g0 = 0.1ωm, nm = 0.5, and
nq = 0.

The evolution of the coherence parameters in the presence of the normalized qubit damping rate γq1/ωm is plotted in Fig. 5(b)
when we consider nm = 0.5, nq = 0 and γm/ωm = 10−6. In this case, we can see that Cmax

q decreases with increasing qubit
relaxation rate, while Cmax

m does not change much with increasing γq1/ωm which emphasizes the robustness of mechanical
displacement against qubit damping. The inset plots also confirm these results. In addition, by looking to the inset plots of
Fig. 5(b), it is clear that for γq1/ωm = 10−2, coherence parameters would be resistant to the qubit dissipation in shorter time
interval ωmt ≤ 2π. Simulations in the longer time interval show that both Cq and Cm decrease and eventually reach small
non-zero steady-state values (Cq ≈ 0.01, Cm ≈ 0.1).

To summarize our study of the influence of the baths, the maximum of attainable coherence seems to be reached at rather
early times that amount to the interaction running for only a few periods of mechanical oscillations. For the state-of-the-
art electromechanical systems, due to their exceptional Q-factors, the interaction at these timescales is very close to unitary.
Therefore, we can state that the interaction with thermal reservoirs during the coherent interaction between the mechanics and
the qubit, has very limited effect on the maximal coherence attainable from fast pulsed interaction studied here.

III. DISCUSSION

In this article, in contrast to the previous steady-state studies [16, 19] we theoretically investigated the possibility of generating
transient quantum coherence in a qubit-mechanical system from incoherent thermal states. We studied the transient interaction
between a charge qubit and a mechanical oscillator, similar to what is found in electromechanical setups [24, 25, 33–37]. We
showed how the sensitivity of the qubit to the offset charge enables us to couple the qubit to the mechanical motion in both
vertical and parallel ways with respect to the eigenstates of the free Hamiltonian of the qubit as far as the system is operated
near the degeneracy point. The simultaneous presence of these two different coupling rates allows the observation of the qubit
coherence in the system with the initial incoherent thermal state. This is so in both the ideal case of unitary interaction and in
the dissipative situation. It should be noted that in this model, dynamical coherence emerges without the use of conventional
methods such as coherent driving [38] or coherence measurement [39, 40].

Differently to the steady-state coherence, the thermal occupation number of the mechanical mode has a positive effect on
generating larger coherence of the qubit. We observed that increasing the net values of the coupling rate g0 causes an im-
provement in the maximum accessible amounts of the qubit coherence and mechanical coherent displacement. In addition, we
demonstrated how the parallel and perpendicular components gz and gx of the coupling rates affect the quantum coherence. In
the case of the qubit coherence Cq, the product gxgz plays the main role while for mechanical displacement Cm, the parallel
coupling gz becomes important. The maximum coherence values for the qubit and the MO could be obtained for |gx| = |gz|, i.e.,
when we set the optimum value θ = π/4 for the coupling phase. Moreover, we showed that the qubit coherence parameter is
strongly dependent on the detuning ∆ through the coupling channel gx such that by adjusting the detuning and setting it close to
resonance ∆ ≈ 0, where the role of the rotating term associated with the coupling rate gx gets dominant, we reach the maximum
values for the qubit coherence parameter. However, changing the detuning can not significantly alter the maximum values of
mechanical displacement. Finally, we obtained that the mechanical coherence generated in our model is almost robust against
both the mechanical and the qubit damping processes, while the larger values of qubit damping rate (γq1 > 10−2ωm) give rise to
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the decaying of the qubit coherence parameter.
The experimental realization of such a model has been already demonstrated in Ref. [24]. Aside from the electromechanical

setups, there are other experimental platforms for the realization of our model such as trapped ions [41, 42] and NV-centers
coupled magnetically to the mechanical motion [43–45]. Hybrid atom-optomechanical and electro-optomechanical systems also
provide a great potential for this purpose [46–51].

Quantum coherence counts among fundamental resources in quantum information processing and quantum computation [10,
11, 52]. It also provides great applications in the context of quantum sensing [53], quantum thermodynamics [54–56], quantum
biology [8] and non-equilibrium models [4, 57, 58]. In each of these fields, autonomous emergence of quantum coherence
can be beneficial. Such proof-of-principle experimental tests will further investigate the emergence of quantum coherence and
extensions of the mechanisms we addressed here.

IV. METHODS

A. Tools for numerical calculation

In this manuscript, we use the QuTiP package [59, 60] to numerically investigate the evolved density matrix as well as
coherent properties of the system in both ideal and dissipative situations. For the ideal case, we solve the von Neumann equation
ρ̇(t) = −i[H, ρ] with the initial condition (2). However, the total density matrix in an open system is obtained by solving the
master equation

ρ̇ = −i[H, ρ] +
∑

n

1
2

(
2Anρ(t)A†n − ρ(t)A†nAn −A

†
nAnρ(t)

)
, (8)

numerically, where in our system A1 =
√
γm(nm + 1) a, A2 =

√
γmnm a†, A3 =

√
γq1 (nq + 1) σ− and A4 =

√
γq1 nq σ+. As

mentioned before, the Hamiltonian H appearing in von Neumann and master equations is given by

H = H0 + Hint, (9)

where H0 = Hq + Hm characterizes the free dynamics of the qubit and the MO with Hq = ωqσz/2 and Hm = ωm(X2
m + P2

m)/2.
The general form of the interaction term between a qubit and the MO can be modeled as

Hint = g0 (n · ~σ)Xm, (10)

where n is a normal vector in Bloch space such that

n · ~σ = σx cos φ sin θ + σy sin φ sin θ + σz cos θ. (11)

In most experimental works [25, 37], the mechanical mode only couples to the one component of the Pauli matrix, i.e., σxXm
(φ = 0, θ = π/2). However, it is also possible to couple the mechanical motion to more than one component of the Pauli
matrix due to the imperfection of the quantum circuit. An experimental realization of such model can be achieved by an
electromechanical system, where a nanomechanical oscillator coupled capacitively to a Cooper-pair box (CPB) as a charge qubit
operating near the so-called degeneracy point (see Fig. 1(b)) [24]. In this setup, the tiny vibration of the mechanical oscillator
can modify the gate-voltage Vg(x) as well as the gate-capacitor Cg(x) such that the gate-charge ng(x) = Cg(x)Vg(x)/2e becomes
mechanically position-dependent (see Appendix A). By controlling the sensitivity of the charge qubit with respect to the gate
charge ng(x), the direct coupling between the qubit and the MO becomes possible.

For the charge qubit, the dynamics and the transition frequency ωq are strongly dependent on gate-charge ng(x) and therefore
on mechanical displacement operator x. Such dependence on the one hand could be destructive as the offset-charge can induce
noise to the qubit and increases its decoherence rate. On the other hand, it induces a desirable coupling between the qubit and
the mechanical modes in our model. In this case, Hint = (gx σx + gz σz) Xm describes the interaction Hamiltonian where gy = 0
(for φ = 0) and gx = g0 sin θ, while gz = g0 cos θ characterizes the residual coupling rate (see Appendix A).

The presence of the coupling term gx σxXm and the additional coupling gz σzXm at the same time, which contain the perpen-
dicular and parallel components σx and σz, with respect to the free Hamiltonian of the qubit Hq = ωqσz/2, make it possible to
produce a coherent state for a qubit from the completely incoherent initial state (2). In addition, the presence of an additional
term gz σzXm in this case, which also contains mechanical displacement, applies the net average force on the MO. This allows
the observation of the mechanical coherence in the system as well.

To quantify the quantum coherence of the qubit and the MO, we employ the measure of the l1-norm of coherence and define
the qubit coherence as Cq(t) =

√
〈σx(t)〉2 + 〈σy(t)〉2 and use Cm(t) =

√
〈Xm(t)〉2 + 〈Pm(t)〉2 for the mechanical coherent dis-

placement, respectively. The expectation values of time-dependent operators 〈σx(t)〉, 〈σy(t)〉, 〈Xm(t)〉 and 〈Pm(t)〉 are determined
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through the following relations

〈σx(y)(t)〉 = Tr
[
ρ(t) (σx(y) ⊗ In)

]
= Tr

[
ρq(t)σx(y)

]
, (12a)

〈Xm(t)〉 = Tr
[
ρ(t) (Iq ⊗ Xm)

]
= Tr

[
ρm(t) Xm

]
, (12b)

〈Pm(t)〉 = Tr
[
ρ(t) (Iq ⊗ Pm)

]
= Tr

[
ρm(t) Pm

]
, (12c)

where In, Iq are the identity operators for the qubit and the MO, ρ(t) represents the evolved density matrix of the system, while
ρq(t) and ρm(t) denote the reduced density matrices of the qubit and the MO, respectively. Once we compute the evolved density
matrix of the system in both ideal and non-ideal situations, we can easily calculate the coherence parameters.
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Appendix A: Extracting the interaction Hamiltonian of the qubit-mechanical system

To extract the interaction term, we start with the equivalent circuit of Fig. 1(d), such that the equivalent voltage Vg(x), which
is the voltage difference across open terminals A and B (the equivalent voltage applied across the Josephson junction), is given
by (see Fig 6(a))

Vg(x) = VA(x) − VB(x) = Vdc

(
C−m(x)

C−m(x) + C0
−

C+
m(x)

C+
m(x) + C0

)
, (A1)

with

C±m(x) =
ε0A

x0 ± x
=

C0
m

(1 ± x/x0)
, (A2)

where x0 indicates the static separation between the parallel plate capacitors C±m(x), while ε0 and A represent the permittivity and
area of the plate capacitors, respectively. By expanding Vg(x) around small motion at x = 0, we have

C±m(x) ≈ C0
m(1 ∓

x
x0

), (A3)

Vg(x) ≈ 2Vdc
C0

mC0

(C0
m + C0)2

·
x
x0

+ O

(
x
x0

)2

. (A4)

Similarly, the equivalent capacitance Cg(x) is found by replacing the DC-voltage source with a short circuit (Fig. 6 (b)),

1
Cg(x)

=
1

Ceq(x)
=

1
C0 + C−m(x)

+
1

C0 + C+
m(x)

, (A5)

Cg(x) ≈
1
2

(C0 + C0
m) + O

(
x
x0

)2

. (A6)

Up to the first order in x, only the gate-voltage is linearly controlled by the mechanical displacement. Therefore, the off-set
charge ng(x) = Cg(x)Vg(x)/2 becomes

ng(x) ≈
Vdc

2ex0
·

C0
mC0

(C0 + C0
m)

x. (A7)

The general Hamiltonian of the qubit in the presence of the mechanical motion is given by

Hq(x) = 4Ec

(
n − ng(x)

)2
− EJ cosϕ, (A8)
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FIG. 6. (a) The Thevenin equivalent representation of the circuit in Fig. 1(c,d) for calculating Vg(x), and (b) the equivalent short circuit used
for calculating Cg(x).

where Ec and EJ are the charging and Josephson energy, respectively, n is the Cooper-pair number operator and ϕ is the su-
perconducting phase operator which can be related to the flux operator through ϕ = 2πΦ/Φ0, where Φ0 = h/(2e) is the flux
quantum. In the number-operator basis the second term of Eq. (A8) can be written as

− EJ cosϕ = −
EJ

2

∑
n

(
|n〉〈n + 1| + |n + 1〉〈n|

)
. (A9)

The eigenenergies of the Hamiltonian (A8) for each n-subspace is given by

λ(n)
± (x) = 4Ec

(
n − ng(x)

)2
+ 4Ec

(
n − ng(x)

)
+ 2Ec ±

1
2

√
E2

J + (4Ec)2
(
1 + 2n − 2ng(x)

)2
. (A10)

Taking the lowest two energy-levels |n = 0〉 and |n = 1〉 as a ground and excited states of a qubit, respectively, into account, the
qubit frequency becomes

ωq(x) = ω(0)
q (x) =

√
E2

J + (4Ec)2
(
1 − 2ng(x)

)2
, (A11)

and the Hamiltonian (A8) takes the following form

Hq(x) ≈ 4Ec

(
1 − 2ng(x)

)
|1〉〈1| + 4Ecn2

g(x) I −
EJ

2
(|0〉〈1| + |1〉〈0|) . (A12)

Now, the interaction Hamiltonian near the charge degeneracy point ng ≈ 1/2 is given by,

Hint =
∂Hq

∂x
x
∣∣∣∣
ng→

1
2

= 8Ec(n − ng)
∂ng(x)
∂x

x
∣∣∣∣
ng→

1
2

≈ 8Ec

[
|1〉〈1| − ng

]∂ng(x)
∂x

x
∣∣∣∣
ng→

1
2

(A13)

where

∂ng(x)
∂x

=
Vdc

2ex0
·

C0
mC0

(C0 + C0
m)
. (A14)

Using the diagonal bases

|+〉 = cosϑ|0〉 + sinϑ|1〉, (A15)
|−〉 = − sinϑ|0〉 + cosϑ|1〉,

where 2ϑ = π/2 − θ0 and θ0 = arctan[4Ec(1 − 2ng)/EJ] [24], the Eq. (A13) can be written as

Hint = g0Xm

[
cos θ0σx − sin θ0σz + (1 − 2ng)

] ∣∣∣∣
ng→

1
2

. (A16)
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(b)

FIG. 7. Optimum values of coherence parameters as a function of (a) the mechanical occupation number nm when Pee = 0 and (b) the qubit
probability amplitude Pee when nm = 0.5, in the presence and in the absence of the coupling term gm. Inset plots in panels (a) and (b) show
the evolution of the Bloch vector during ωmt ∈ [0, 30] for (a) different mechanical occupation numbers nm = 0 and nm = 15 with Pee = 0, as
well as (b) different values of Pee = 0 and Pee = 0.48 with nm = 0.5. The evolution of Cq for (c) Pee = 0 and (d) Pee = 0.48 together with the
quadratic fittings in the absence and in the presence of gm, when nm = 0.5. Inset plots in panels (c) and (d) show the zoomed rectangle-region
of fitting for a short time interval ωmt ∈ [0, 1]. (e) The evolution of Cm for two different values of Pee = 0 and Pee = 0.48 with and without
coupling constant gm. Other numerical parameters are the same as those in Fig. 2.

Here, we define x =
√

2xzpf Xm with xzpf =
√
~/(2mωm) being the zero-point fluctuation, σz ≡ |+〉〈+| − |−〉〈−| and σx ≡

|+〉〈−| + |−〉〈+| denote the z and x components of Pauli matrix, aligned with the energy quantization axis and perpendicular to it,
respectively, and g0 is the single phonon qubit-mechanics coupling, defined as

g0 =
4Ec

2e
·

C0
mC0

(C0 + C0
m)
·

xzpf

x0
Vdc. (A17)

By using the spherical coordinates in the Bloch space, where φ = 0 and θ ≡ θ0 +π/2, the general form of interaction Hamiltonian
(1) is derived and the qubit-mechanical coupling rates gx and gz can be extracted as

gx = g0 cos θ0 = g0 sin θ, (A18)
gz = −g0 sin θ0 = g0 cos θ,

In addition, standing close to the degeneracy point induces a small qubit-independent shift (QID) with the coupling rate gm =

g0(1−2ng) to the MO which is negligible for ng → 1/2 such that we have ignored it in Eq. (1). The complete dynamical behavior
of the coherence parameters in the presence of this shift has been discussed in Appendix B.

Appendix B: Effects of the coherent driving term on the quantum coherence

In the vicinity of the degeneracy point (ng → 1/2), the coupling term gm = g0(1 − 2ng) is too small in comparison with other
coupling rates gx and gz so that, the QID term can slightly modify the dynamics of the quantum coherence. By considering the
shift term gmXm, the interaction Hamiltonian of the system now becomes

Hint = (gxσx + gzσz + gm) Xm. (B1)

In Fig. 7(a,b) the optimum values of the coherence parameters Cq and Cm with respect to the mechanical-thermal number nm
(Fig. 7(a)) and the qubit weight Pee (Fig. 7(b)) are depicted in the presence and the absence of the coupling rate gm. From those
panels, we can see that the constant shift moderately improves the results for both qubit coherence and mechanical coherent
displacement. In addition, the inset plots in panels (a) and (b) of Fig 7 show the evolution of the Bloch vector for different values
of nm (Fig. 7(a) ) and Pee (Fig. 7(c)) when we consider the coupling term gm , 0. As is evident from inset plots of Fig. 7(a),
by increasing the mechanical occupation numbers nm, the expectations 〈σx(t)〉 and 〈σy(t)〉 take larger values which give rise to
larger amount of qubit coherence parameter Cq. On the other hand, increasing the qubit thermal number nq or equivalently, Pee,
causes the reduction in mean values of 〈σx(t)〉 and 〈σy(t)〉 and consequently Cq (see inset plots in Fig 7(b)). These results are
completely in agreement with the previous outcomes explained in the body of the manuscript. Moreover, in Panels (c,d) and (e)
of Fig. 7, the evolution of Cq and Cm in the absence and the presence of the QID term are depicted as a function of normalized
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time ωmt for two different values Pee = 0 and Pee = 0.48. In accordance with Fig. 7(a,b), the presence of gm can slightly change
the values of the coherence parameters in time.

Similar to what we get in Eq. (5), we can also calculate the coherence components for a very tiny time interval, when we apply
QID gmXm into the dynamics of the system

〈Xm(t)〉 ≈
√

2t2
[
gz

(
ωm(2Pee − 1)nm(4nm + 3) + ωq(nm + 1

2 )
)

+ gm

(
ωmnm(4nm + 3) + ωq(2Pee − 1)(nm + 1

2 )
)]
, (B2a)

〈Pm(t)〉 ≈ −
√

2gzt(2Pee − 1), (B2b)

〈σx(t)〉 ≈ 2gxt2(2nm + 1)
[
gz (2Pee − 1) + gm

]
, (B2c)

〈σy(t)〉 ≈ 0. (B2d)

As is evident from Eqs. (5c) and (B2c), the qubit coherence parameter evolves quadratically in a very short time domain. By
introducing the fitting function F(gm=0)

fit = |2gxgz(2nm + 1)(2Pee − 1)t2| and F(+gm)
fit = |2gx(2nm + 1)(gz(2Pee − 1) + gm)t2| associated

with the Eqn. (5c) and (B2c), in Panels (c) and (d) of Fig.7 and their insets we checked the consistency of the analytical and
numerical results for qubit coherence in two conditions of the absence and the presence of the coupling rate gm, respectively. As
can be seen, for a short time interval the results are matched which confirm that qubit coherence parameter behaves quadratically
for the initial time interval.
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